Skip to main content
Log in

Comparison of Some Scalarization Methods in Multiobjective Optimization

Comparison of Scalarization Methods

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The paper presents an analysis, characterizations and comparison of six commonly used scalarization methods in multiobjective optimization. The properties of these methods are investigated with respect to the basic characteristics such as ordering cone, convexity and boundedness, the ability of generating proper efficient solutions, the ability to consider reference points which is a choice of decision maker as a solution and weighting preferences of decision maker, the number of additional constraints and decision variables. The paper also presents new characteristics for these methods and relations between them. The main characteristics of these scalarization methods are illustrated on the same example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kasimbeyli, R., Ozturk, Z.K., Kasimbeyli, N., Yalcin, G.D., Icmen, B.: Conic scalarization method in multiobjective optimization and relations with other scalarization methods. In: An, L.T.H., Tao, P.D., Thanh, N.N. (eds.) Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences-MCO 2015-Part I, Volume of Series: Advances in Intelligent Systems and Computing, vol. 359, pp. 319–329. Springer (2015)

  2. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Ehrgott, M., Ryan, D.: Constructing robust crew schedules with bicriteria optimization. J. Multi-Criteria Decis. Anal. 11(3), 139–150 (2002)

    Article  Google Scholar 

  4. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets. J. Optim. Theory Appl. 162, 428–446 (2014)

    Article  MathSciNet  Google Scholar 

  5. Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 (1983)

    Article  MathSciNet  Google Scholar 

  6. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  7. Miettinen, K., Mäkelä, M.: On scalarizing functions in multiobjective optimization. OR Spectr. 24, 193–213 (2002)

    Article  MathSciNet  Google Scholar 

  8. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Applications, pp. 468–486. Springer, Berlin (1980)

    Chapter  Google Scholar 

  9. Bazán, F.F., Hernández, E.: A unified vector optimization problem: complete scalarizations and applications. Optimization 60(12), 1399–1419 (2011)

    Article  MathSciNet  Google Scholar 

  10. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67(2), 297–320 (1990)

    Article  MathSciNet  Google Scholar 

  11. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)

    Article  MathSciNet  Google Scholar 

  12. Rubinov, A.M., Gasimov, R.N.: Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation. J. Glob. Optim. 29, 455–477 (2004)

    Article  MathSciNet  Google Scholar 

  13. Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007)

    Article  MathSciNet  Google Scholar 

  14. Ehrgott M, Wiecek M (2005) Multiobjective programming, in multicriteria decision analysis: state of the art surveys. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) pp. 667–722. Springer, New York (2005)

  15. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  Google Scholar 

  16. Wierzbicki, A.P.: Reference Point Methods in Vector Optimization and Decision Support, Interim Report IR-98-017. International Institute for Applied Systems Analysis, Laxenburg, Austria (1998)

  17. Zopounidis, C., Pardalos, P.M. (eds.) Handbook of Multicriteria Analysis, vol. XXV, pp. 455. ISBN 978-3-540-92827-0 (print), 978-3-540-92828-7 (2010)

    MATH  Google Scholar 

  18. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    Article  MathSciNet  Google Scholar 

  19. Henig, M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    Article  MathSciNet  Google Scholar 

  20. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval Res. Logist. Quart. 2, 39 (1955)

    Article  MathSciNet  Google Scholar 

  21. Klamroth, K., Tind, J.: Constrained optimization using multiple objective programming. J. Glob. Optim. 37(3), 325–355 (2007)

    Article  MathSciNet  Google Scholar 

  22. Haimes, Y.Y., Wismer, D.A., Lasdon, L.S.: On bicriterion formulation of the integrated systems identification and system optimization. In: IEEE Transactions on Systems, Man, and Cybernetics SMC-1, pp. 296–297 (1971)

  23. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. Elsevier Science Publishing, New York (1983)

    MATH  Google Scholar 

  24. Benson, H.P.: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26, 569–580 (1978)

    Article  MathSciNet  Google Scholar 

  25. Soleimani-damaneh, M., Zamani, M.: On Benson’s scalarization in multiobjective optimization. Optim. Lett. 10, 1757–1762 (2016)

    Article  MathSciNet  Google Scholar 

  26. Jr, V.J.: Bowman, on the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. Lect. Notes Econ. Math. Syst. 130, 76–86 (1976)

    Article  Google Scholar 

  27. Kaliszewski, I.: A modified weighted Tchebycheff metric for multiple objective programming. Comput. Oper. Res. 14, 315–323 (1987)

    Article  MathSciNet  Google Scholar 

  28. Gerstewitz, C.: Nichtkonvexe Dualitat in der Vektoroptimierung. Wissensch. Zeitschr. TH Leuna-Merseburg 25(3), 357–364 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Tammer, C., Winkler, K.: A new scalarization approach and applications in multicriteria d.c. optimization. J. Nonlinear Convex Anal. 4(3), 365–380 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Weidner, P.: Ein Trennungskonzept und seine Anwendung auf Vektoroptimierungsprobleme, Professorial dissertation. Univ. of Halle, Germany (1990)

  31. Gasimov, R. N.: Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization, In: Koksalan, M., Zionts, S. (eds.) Multiple Criteria Decision Making in the New Millennium, Book Series: Lecture Notes in Economics and Mathematics Systems, vol. 507, pp. 189–198 (2001)

    Google Scholar 

  32. Ehrgott, M., Waters, C., Kasimbeyli, R., Ustun, O.: Multiobjective programming and multiattribute utility functions in Portfolio optimization. In: INFOR: Information Systems and Operational Research, vol. 47, pp. 31–42 (2009)

    MathSciNet  Google Scholar 

  33. Gasimov, R.N., Sipahioglu, A., Sarac, T.: A multiobjective programming approach to 1.5-dimensional assortment problem. Eur. J. Oper. Res. 179, 64–79 (2007)

    Article  Google Scholar 

  34. Ismayilova, N.A., Sagir, M., Gasimov, R.N.: A multiobjective faculty-course-time slot assignment problem with preferences. Math. Comput. Modell 46, 1017–1029 (2007)

    Article  MathSciNet  Google Scholar 

  35. Kasimbeyli, R.: Radial epiderivatives and set-valued optimization. Optimization 58, 521–534 (2009)

    Article  MathSciNet  Google Scholar 

  36. Kasimbeyli, R.: A nonlinear cone separation theorem and scalarization in nonconvex vector optimization. SIAM J. Optim. 20, 1591–1619 (2010)

    Article  MathSciNet  Google Scholar 

  37. Rubinov, A.M., Gasimov, R.N.: Strictly increasing positively homogeneous functions with applications to exact penalization. Optimization 52, 1–28 (2003)

    Article  MathSciNet  Google Scholar 

  38. Kasimbeyli, R.: A conic scalarization method in multiobjective optimization. J. Glob. Optim. 56(2), 279–297 (2013)

    Article  MathSciNet  Google Scholar 

  39. Kasimbeyli N (2015) Existence and characterization theorems in nonconvex vector optimization. J. Glob. Optim. https://doi.org/10.1007/s10898-014-0234-7

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refail Kasimbeyli.

Additional information

Communicated by Anton Abdulbasah Kamil.

This study was supported by Anadolu University Scientific Research Projects Commission under the Grant No. 1304F062.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasimbeyli, R., Ozturk, Z.K., Kasimbeyli, N. et al. Comparison of Some Scalarization Methods in Multiobjective Optimization. Bull. Malays. Math. Sci. Soc. 42, 1875–1905 (2019). https://doi.org/10.1007/s40840-017-0579-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0579-4

Keywords

Mathematics Subject Classification

Navigation