Skip to main content
Log in

Constrained optimization using multiple objective programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In practical applications of mathematical programming it is frequently observed that the decision maker prefers apparently suboptimal solutions. A natural explanation for this phenomenon is that the applied mathematical model was not sufficiently realistic and did not fully represent all the decision makers criteria and constraints. Since multicriteria optimization approaches are specifically designed to incorporate such complex preference structures, they gain more and more importance in application areas as, for example, engineering design and capital budgeting. The aim of this paper is to analyze optimization problems both from a constrained programming and a multicriteria programming perspective. It is shown that both formulations share important properties, and that many classical solution approaches have correspondences in the respective models. The analysis naturally leads to a discussion of the applicability of some recent approximation techniques for multicriteria programming problems for the approximation of optimal solutions and of Lagrange multipliers in convex constrained programming. Convergence results are proven for convex and nonconvex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balas E. (1979) Disjunctive programming. Ann. Discrete Math. 5, 3–51

    Google Scholar 

  • Bazaraa M.S., Sherali H.D., Shetty C.M. (1993) Nonlinear Programming—Theory and Algorithms, 2nd edn. Wiley, New York

    Google Scholar 

  • Benson H.P. (1978) Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26, 569–580

    Article  Google Scholar 

  • Boldur G.: Linear programming problems with complex decision conditions. In: Proceeding of the 7th Mathematical Programming Symposium, The Hague, September 1970

  • Bowman V.J. Jr.(1976) On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. Lect. Notes Econ. Math. Syst. 130, 76–86

    Google Scholar 

  • Boyd S., Vandenberghe L. (2004) Convex Optimization. Cambridge University Press, Cambridge

    Google Scholar 

  • Camponogara E., Talukdar S.N. (1997) A genetic algorithm for constrained and multiobjective optimization. In: Alander J.T. (ed) 3rd Nordic Workshop on Genetic Algorithms and their Applications. University of Vaasa, Finland, pp. 49–62

    Google Scholar 

  • Carosi L., Jahn J., Martein L. (2003) On the connections between semidefinite optimization and vector optimization. J. Interdisciplinary Math. 6, 219–229

    Google Scholar 

  • Chankong V., Haimes Y.Y. (1983) Multiobjective Decision Making: Theory and Methodology. Elsevier Science Publishing, New York

    Google Scholar 

  • Coello Coello C.A. (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civil Eng Environ Syst. 17, 319–346

    Article  Google Scholar 

  • Coello Coello C.A., Mezura-Montes E. (2002) Handling constraints in genetic algorithms using dominance-based tournaments. In: Parmee I.C. (ed) Proceedings of the 5th International Conference on Adaptive Computing Design and Manufacture (ACDM 2002). Springer-Verlag, Berlin, pp. 273–284

    Google Scholar 

  • Cohon J.L. (1978) Multiobjective Programming and Planning. Academic Press, New York

    Google Scholar 

  • Cooper W.W., Seiford L.M., Tone K. (2000) Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Kluwer, Boston

    Google Scholar 

  • Ehrgott M.: A Discussion of Scalarization Techniques for Multiple Objective Integer Programming. Annals of Operations Research. (To appear 2006)

  • Ehrgott M. (2000) Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin

    Google Scholar 

  • Ehrgott M., Ryan D.M. (2003) The method of elastic constraints for multiobjective combinatorial optimization and its application in airline crew scheduling. In: Tanino T., Tanaka T., Inuiguchi M. (eds) Multi-Objective Programming and Goal Programming. Springer, Berlin, pp. 117–122

    Google Scholar 

  • Elhedhli S., Goffin J.-L., Vial J.-P. (2001) Cutting plane methods for differentiable optimization. In: Pardalos P., Floudas C. (eds) Encyclopedia of Optimization, vol 4. Kluwer, Dordrecht, pp. 40–45

    Google Scholar 

  • Fletcher R., Leyffer S. (2002) Nonlinear programming without a penalty function. Math. Program. 91, 239–269

    Article  Google Scholar 

  • Gass S., Saaty T. (1955) The computational algorithm for the parametric objective function. Naval Res. Logistics Quart. 2: 39

    Article  Google Scholar 

  • Geoffrion A.M. (1968) Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3): 618–630

    Article  Google Scholar 

  • Geoffrion A.M., Dyer J.S., Feinberg A. (1972) An interactive approach for multicriterion optimization, with application to the operation of an academic department. Manage. Sci. 19, 357–368

    Article  Google Scholar 

  • Gruber P.M. (1992) Approximation of convex bodies. In: Gruber P.M., Wills J.M. (eds) Handbook of Convex Geometry. North-Holland, Amsterdam, pp. 321–345

    Google Scholar 

  • Haimes Y.Y., Lasdon L.S., Wismer D.A. (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Sys. Man Cybern. 1, 296–297

    Article  Google Scholar 

  • Hamacher H.W., Pederson C.R., Ruzika S.: Finding Representative Systems for Discrete Bicriteria Optimization Problems by Box Algorithms. Operations Research Letters (to appear)

  • Holmberg K. (1997) Mean value cross decomposition applied to integer programming problems. Eur. J. Oper. Res. 97, 124–138

    Article  Google Scholar 

  • Jiménez F., Gómez-Skarmeta A.F., Sánchez G. (2002) How evolutionary multi-objective optimization can be used for goals and priorities based optimization. In: Alba E., Fernández F., Gómez J.A., Hidalgo J.I., Lanchares J., Merelo J.J., Sánchez J.M. (eds) Primer Congreso Español de Algoritmos Evolutivos y Bioinspirados (AEB’02). Universidad de la Extremadura, España, pp. 460–465

    Google Scholar 

  • Kamenev G.K. A class of adaptive algorithms for the approximation of convex bodies by polyhedra. Zh. Vychisl. Mat. Mat. Fiz., 32(1), 136–152. In Russian; English translation in Comput. Maths. Math. Phys. 32(1), 114–127 (1992)

    Google Scholar 

  • Kamenev G.K. Investigation of an algorithm for the approximation of convex bodies. Zh. Vychisl. Mat. Mat. Fiz., 34(4), 608–616. In Russian; English translation in Comput. Maths. Math. Phys. 34(4), 521–528 (1994)

  • Klamroth K., Tind J., Wiecek M.M. (2002) Unbiased approximation in multicriteria optimization. Math. Meth. Oper. Res. 56, 413–437

    Google Scholar 

  • Lin J. (2005) On min-norm and min-max methods of multi-objective optimization. Math. Program. 103, 1–33

    Article  Google Scholar 

  • Lotov A.V.: Methods for Analysis of Mathematical Models of Controlled Systems on the Basis of Constructing the Set of Feasible Values for the Criteria of Control Quality. Dr.Hab. Thesis, Computing Center of the USSR Academy of Sciences, Moscow (1985) (In Russian)

  • Lotov A.V., Bushenkov V.A., Kamenev G.K. (2004) Interactive Decision Maps. Approximation and Visualization of Pareto Frontier. Kluwer, Dordrecht

    Google Scholar 

  • Mezura-Montes E., Coello Coello C.A.: A numerical comparison of some multiobjective-based techniques to handle constraints in genetic algorithms. Technical Report EVOCINV-03-2002, Evolutionary Computation Group at CINVESTAV-IPN, Mexico D.F. 07300 (2002)

  • Osyczka A., Krenich S., Tamura H., Goldberg D. (2000) A bicriterion approach to constrained optimization problems using genetic algorithm. Evol. Optim. Int. J. Internet 2, 41–53

    Google Scholar 

  • Pascoletti A., Serafini P. (1984) Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524

    Article  Google Scholar 

  • Rockafellar R.T. (1970) Convex Analysis. Princeton University Press, Princeton NJ

    Google Scholar 

  • Rote G. (1992) The convergence rate of the sandwich algorithm for approximating convex functions. Computing, 48, 337–361

    Article  Google Scholar 

  • Roy B. (1971) Problems and methods with multiple objective functions. Math. Program. 1, 239–266

    Article  Google Scholar 

  • Schandl B., Klamroth K., Wiecek M.M.(2002a) Introducing oblique norms into multiple criteria programming. J. Global Optim. 23, 81–97

    Article  Google Scholar 

  • Schandl B., Klamroth K., Wiecek M.M.(2002b) Norm-based approximation in multicriteria programming. Comput. Math. Appl. 44, 925–942

    Article  Google Scholar 

  • Steuer R.E. (1986) Multiple Criteria Optimization: Theory, Computation, and Application. Wiley, New York

    Google Scholar 

  • Steuer R.E., Choo E.U. (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344

    Article  Google Scholar 

  • Stewart T.J. (1992) A critical survey on the status of multiple criteria decision making, theory and practice. OMEGA Int. J. Manage. Sci. 20, 569–586

    Article  Google Scholar 

  • Surry P.D., Radcliffe N.J. (1997) The COMOGA method: Constrained optimization be multiobjective genetic algorithms. Control Cybern. 26, 391–412

    Google Scholar 

  • Wierzbicki A.P. (1977) Basic properties of scalarizing functionals for multiobjective optimization. Math. Operationsforschung und Statistik, Ser. Optim. 8, 55–60

    Google Scholar 

  • Wierzbicki A.P. (1980) The use of reference objectives in multiobjective optimization. In: Fandel G., Gal T. (eds) Multiple Criteria Decision Making, Theory and Applications Lecture Notes in Economics and Mathematical Systems vol 177. Springer, Berlin, pp. 468–486

    Google Scholar 

  • Wierzbicki A.P. (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spektrum 8, 73–87

    Article  Google Scholar 

  • Wierzbicki A.P., Makowski M., Wessels J. (eds) (2000) Model-Based Decision Support Methodology with Environmental Applications. Kluwer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Klamroth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klamroth, K., Jørgen, T. Constrained optimization using multiple objective programming. J Glob Optim 37, 325–355 (2007). https://doi.org/10.1007/s10898-006-9052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9052-x

Keywords

Navigation