Skip to main content
Log in

Asymptotic Profile of Solutions to the Degasperis–Procesi Equation

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

It is shown that a strong solution of the Degasperis–Procesi equation, initially decaying exponentially together with its spatial derivative, must be identically equal to zero if it also decays exponentially at a later time. The decay rate of the corresponding strong solution at infinity is also given for some kinds of initial data with exponential decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R., Sattinger, D., Szmigielski, J.: Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beals, R., Sattinger, D., Szmigielski, J.: Multi-peakons and a theorem of Stieltjes. Inverse Probl. 15, L1–L4 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. R. Soc. Lond. Ser. A 278(1287), 555–601 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II: The KdV equation. Geom. Funct. Anal. 3, 209–262 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, W.: On solutions to the Degasperis–Procesi equation. J. Math. Anal. Appl. 379, 351–359 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coclite, G.M., Karlsen, K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 233(1), 60–91 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50(2), 321–362 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin, A.: Finite propagation speed for the Camassa–Holm equation. J. Math. Phys. 46, 023506 (2005)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., Escher, J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. 51, 475–504 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform fot the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Constantin, A., Kolev, B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A 35(32), R51–R79 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  16. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Commun. Math. Phys. 211(1), 45–61 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1461–1472 (2002)

    MathSciNet  Google Scholar 

  20. Degasperis, A., Procesi, M.: Asymptotic Integrability. Symmetry and Perturbation Theory (Rome,1998). World Scientific Publishing, River Edge (1999)

    Google Scholar 

  21. Dullin, H.R., Gottwald, G.A., Holm, D.: Camassa–Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73–95 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Himonas, A., Misiołek, G., Ponce, G., Zhou, Y.: Persistence Properties and Unique Continuation of solutions of the Camassa–Holm equation. Commun. Math. Phys. 271, 511–522 (2007)

    Article  MATH  Google Scholar 

  23. Henry, D.: Persistence properties for the Degasperis–Procesi equation. J. Hyperbolic Differ. Equ. 5, 99–111 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Henry, D.: Compactly supported solutions of the Camassa–Holm equation. J. Nonlinear Math. Phys. 12(3), 342–347 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Johnson, R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Kato, T.: On the Korteweg-de Vries equation. Manuscr. Math. 28(1–3), 89–99 (1979)

    Article  MATH  Google Scholar 

  27. Kenig, C., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. McKean, H.P.: Breakdown of a shallow water equation. Asian J. Math. 2(4), 867–874 (1998)

    MATH  MathSciNet  Google Scholar 

  30. McKean, H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57, 416–418 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Misiołek, G.: Classical solutions of the periodic Camassa–Holm equation. Geom. Funct. Anal. 12(5), 1080–1104 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Molinet, L.: On well-posedness results for Camassa–Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11(4), 521–533 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tao, T.: Low-regularity global solutions to nonlinear dispersive equations, Surveys in analysis and operator theory (Canberra, 2001), 19–48. In: Proceedings of Centre Math. Appl. Austral. Nat. Univ., 40, Australian National University, Canberra, 2002

  34. Xin, Z., Zhang, P.: On the weak solution to a shallow water equation. Commun. Pure Appl. Math. 53, 1411–1433 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yin, Z.: On the Cauchy problem for an integrable equation with peakon solutions. Ill. J. Math. 47, 649–666 (2003)

    MATH  Google Scholar 

  36. Zhou, Y.: Blow-up phenomenon for the integrable Degasperis–Procesi equation. Phys. Lett. A 328, 157–162 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhou, Y.: Wave breaking for a shallow water equation. Nonlinear Anal. 57, 137–152 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhou, Y.: Wave breaking for a periodic shallow water equation. J. Math. Anal. Appl. 290, 591–604 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for their careful reading and suggestions on this manuscript. This work was partially supported by Natural Science Foundation of China under Grant Nos. 11301394 and 11226172, Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ12A01009 and the National Basic Research Program of China under Grant No. 2012CB426510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Guo.

Additional information

Communicated by Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Guo, Z. Asymptotic Profile of Solutions to the Degasperis–Procesi Equation . Bull. Malays. Math. Sci. Soc. 38, 333–344 (2015). https://doi.org/10.1007/s40840-014-0023-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-014-0023-y

Keywords

Navigation