Skip to main content
Log in

Simulation of Simultaneous Leaching of Copper and Cobalt Minerals in Acid-Reductive Media: Sensitivity Analysis and Optimization

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In this study, an ASPEN Plus model in steady state, based on experimental studies, was developed to investigate the leaching behavior of copper and cobalt minerals in sulfuric acid-sodium metabisulfite media. The experimental results indicated that copper and cobalt dissolution efficiencies reach 91 and 72%, respectively. The integration of experimental parameters set-up in the ASPEN Plus simulator allowed the reliability of the developed model. The sensitivity analysis performed highlighted the relative effect of acid concentration, leaching time, temperature, and sodium metabisulfite on the leaching process. Moreover, it revealed that the dissolution of copper minerals was mainly enhanced by the increasing sulfuric acid mass flow rate. The dissolution of cobalt from asbolane was promoted by increasing sulfuric acid mass flow rate, while the extraction of cobalt contained in heterogenite highly depended on sodium metabisulfite (Na2S2O5) mass flow rate. However, a marginal decrease in copper recovery was observed by increasing the mass flow rate of sodium metabisulfite. ASPEN Plus simulated results showed that the leaching recovery could reach 99.77% and 97.92% for copper and cobalt under optimized operating conditions, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jämsä-Jounela S-L, Cziprián Z (1998) Heap leaching simulation. IFAC Autom Mining Miner Met Process 31(23):43–48

    Google Scholar 

  2. Park KH, Kim HI, Das RP (2005) Selective acid leaching of nickel and cobalt from precipitated manganese hydroxide in the presence of chlorine dioxide. Hydrometallurgy 78:271–277. https://doi.org/10.1016/j.hydromet.2005.05.001

    Article  CAS  Google Scholar 

  3. Kasongo B, Monga J-J, Mwanat H (2021) Implementation of artificial neural network into the copper and cobalt leaching process. In: 2021 Southern African Universities power engineering conference/robotics and mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), pp 1–5. https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377230.

  4. Crundwell FK, Preez NB, Knights BDH (2020) Production of cobalt from copper-cobalt ores on the African Copperbelt—an overview. Miner Eng 156:106450. https://doi.org/10.1016/j.mineng.2020.106450

    Article  CAS  Google Scholar 

  5. Mwanat MH-M, Kasongo KB (2021) Cobalt dissolution from concentrate in sulfuric acid—ferrous sulfate system: process parameters optimization by response surface methodology (RSM ). J Sustain Metall. https://doi.org/10.1007/s40831-021-00460-1

    Article  Google Scholar 

  6. Leiva C, Flores V, Salgado F, Poblete D, Acuña C (2017) Applying softcomputing for copper recovery in leaching process. Sci Program. https://doi.org/10.1155/2017/6459582Research

    Article  Google Scholar 

  7. Kasongo BK, Mwanat HM, Ngamba G, Merveille K, Kapiamba KF (2021) Statistical investigation of flotation parameters for copper recovery from sulfide flotation tailings. Results Eng 9:1–5. https://doi.org/10.1016/j.rineng.2021.100207

    Article  CAS  Google Scholar 

  8. Haydary J (2019) Chemical process design and simulation: ASPEN Plus and Aspen HYSYS applications. Wiley, New York

    Google Scholar 

  9. Kaushal P, Tyagi R (2017) Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN Plus. Renew Energy 101:629–636. https://doi.org/10.1016/j.renene.2016.09.011

    Article  CAS  Google Scholar 

  10. Hejazi B, Grace JR (2020) Simulation of tar-free biomass syngas enhancement in a calcium looping operation using ASPEN Plus built-in fluidized bed model. Int J Greenh Gas Control 99:103096. https://doi.org/10.1016/j.ijggc.2020.103096

    Article  CAS  Google Scholar 

  11. Tavares R, Monteiro E, Tabet F, Rouboa A (2020) Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using ASPEN Plus. Renew Energy 146:1309–1314. https://doi.org/10.1016/j.renene.2019.07.051

    Article  CAS  Google Scholar 

  12. Tungalag A, Lee BJ, Yadav M, Akande O (2020) Yield prediction of MSW gasification including minor species through ASPEN Plus simulation. Energy 198:117296. https://doi.org/10.1016/j.energy.2020.117296

    Article  CAS  Google Scholar 

  13. Bravo D, Álvarez-Hornos FJ, Penya-roja JM, San-Valero P, Gabaldón C (2018) ASPEN Plus process-simulation model: producing biogas from VOC emissions in an anaerobic bioscrubber. J Environ Manag 213:530–540. https://doi.org/10.1016/j.jenvman.2018.02.040

    Article  CAS  Google Scholar 

  14. AlNouss A, Parthasarathy P, Shahbaz M, Al-Ansari T, Mackey H, McKay G (2020) Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN Plus. Appl Energy 261(2019):114350. https://doi.org/10.1016/j.apenergy.2019.114350

    Article  CAS  Google Scholar 

  15. Jayarathna CK, Mathisen A, Øi LE, Tokheim LA (2017) ASPEN Plus® process simulation of calcium looping with different indirect calciner heat transfer concepts. Energy Procedia 114(1876):201–210. https://doi.org/10.1016/j.egypro.2017.03.1162

    Article  CAS  Google Scholar 

  16. Gao J et al (2019) Process simulation and energy integration in the mineral carbonation of blast furnace slag. Chin J Chem Eng 27(1):157–167. https://doi.org/10.1016/j.cjche.2018.04.012

    Article  CAS  Google Scholar 

  17. Yadav ES, Indiran T, Nayak D, Kumar CA, Selvakumar M (2020) Simulation study of distillation column using ASPEN Plus. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.07.609

    Article  Google Scholar 

  18. Khoo JZ, Haque N, Bhattacharya S (2017) Process simulation and exergy analysis of two nickel laterite processing technologies. Int J Miner Process 161:83–93. https://doi.org/10.1016/j.minpro.2017.02.012

    Article  CAS  Google Scholar 

  19. Saidi M, Kadkhodayan H (2020) Experimental and simulation study of copper recovery process from copper oxide ore using ASPEN Plus software: optimization and sensitivity analysis of effective parameters. J Environ Chem Eng 8(3):103772. https://doi.org/10.1016/j.jece.2020.103772

    Article  CAS  Google Scholar 

  20. Gómez-Ríos D, Navarro G, Monsalve P, Barrera-Zapata R, Ríos-Estepa R (2019) ASPEN Plus simulation strategies applied to the study of chitin ioextraction from shrimp waste. Food Technol Biotechnol 57(2):238–248. https://doi.org/10.17113/ftb.57.02.19.6003

    Article  CAS  Google Scholar 

  21. Nicol MJ (2018) The kinetics of the dissolution of malachite in acid solutions. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2018.03.017

    Article  Google Scholar 

  22. Bayati B, Azizi A, Karamoozian M (2018) A comprehensive study of the leaching behavior and dissolution kinetics of copper oxide ore in sulfuric acid lixiviant. Trans C Chem Chem Eng 25:1412–1422. https://doi.org/10.24200/sci.2018.5226.1154

    Article  Google Scholar 

  23. Bai S, Fu X, Li C, Wen S (2018) Process improvement and kinetic study on copper leaching from low-grade cuprite ores. Physicochem Probl Miner Process 54(2):300–310. https://doi.org/10.5277/ppmp1818

    Article  CAS  Google Scholar 

  24. Nasab MH, Noaparast M, Abdollahi H (2020) Dissolution optimization and kinetics of nickel and cobalt from iron-rich laterite ore, using sulfuric acid at atmospheric pressure. Int J Chem Kinet. https://doi.org/10.1002/kin.21349

    Article  Google Scholar 

  25. Yakusheva EA, Gorichev IG, Atanasyan TK, Lainer YA (2010) Kinetics of dissolution of cobalt oxides in acidic media. Russ Metall 2010(1):18–23. https://doi.org/10.1134/S0036029510010040

    Article  Google Scholar 

  26. Tshibanda P, Kime M, Edouard M, Richard B, Arthur T (2017) Agitation and column leaching studies of oxidised copper-cobalt ores under reducing conditions. Miner Eng 111:47–54. https://doi.org/10.1016/j.mineng.2017.06.001

    Article  CAS  Google Scholar 

  27. Künkül A, Kocakerim MM, Yapici S, Demirbaǧ A (1994) Leaching kinetics of malachite in ammonia solutions. Int J Miner Process 41(3–4):167–182. https://doi.org/10.1016/0301-7516(94)90026-4

    Article  Google Scholar 

  28. Lam E, Cooper W (1982) Leaching of a low-grade oxide copper ore containing significant amounts of goethite. Trans Inst Min Met 91:100–104

    CAS  Google Scholar 

  29. Ferron CJ (2008) Sulfur dioxide : a versatile reagent for the processing of cobaltic oxide minerals. Aqueous Process

  30. Razavizadeh H, Afshar MR (2008) Leaching of Sarcheshmeh copper oxide ore in sulfuric acid solution. Miner Metall Process 25(2):85–90

    CAS  Google Scholar 

  31. Bingol D, Canbazoglu M (2004) Dissolution kinetics of malachite in sulphuric acid. Hydrometallurgy 72:159–165. https://doi.org/10.1016/j.hydromet.2003.10.002

    Article  CAS  Google Scholar 

  32. Tshipeng SY, TshamalaKaniki A, Kime MB (2017) Effects of the addition points of reducing agents on the extraction of copper and cobalt from oxidized copper-cobalt ores. J Sustain Metall 3(4):823–828. https://doi.org/10.1007/s40831-017-0149-x

    Article  Google Scholar 

  33. Mwema MD, Mpoyo M, Kafumbila K (2002) Use of sulphur dioxide as reducing agent in cobalt leaching at Shituru hydrometallurgical plant. J South Afr Inst Min Metall 102(1):1–4

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank MetLab Solutions for its generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kubangala Brest Kasongo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

The contributing editor for this article was Dimitrios Panias.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwanat, M.HM., Kasongo, K.B., Muliangala, M.F. et al. Simulation of Simultaneous Leaching of Copper and Cobalt Minerals in Acid-Reductive Media: Sensitivity Analysis and Optimization. J. Sustain. Metall. 8, 837–850 (2022). https://doi.org/10.1007/s40831-022-00535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00535-7

Keywords

Navigation