Skip to main content
Log in

Selective Separation of Arsenic from High-Arsenic Dust in the NaOH-S System Based on Response Surface Methodology

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The selective separation of arsenic in the NaOH-S system from arsenic dust containing Pb, Sb, and Zn was studied by central composite design response surface method in this investigation. The results indicated that the presence of elemental sulfur can prevent lead and antimony leaching from arsenic dust effectively. The optimal leaching conditions were established as follows: 3.0 mol/L sodium hydroxide, 10 g/L sulfur, leaching temperature 95 °C, leaching time 2.0 h, liquid to solid ratio 6, and stirring speed 400 r/min. The arsenic leaching efficiency can reach 99.37% under the optimized conditions, meanwhile 98.39% of Sb, 99.74% of Zn, and 99.91% of Pb remained in the leach residue with the arsenic content < 0.1%. Oxidation-cooling crystallization has been used to recover sodium arsenate from the leaching solution under the optimal reaction conditions: C(H2O2)/C(As) 0.45, oxidation temperature 50 °C, stirring speed 200 r/min, crystallization temperature 30 °C, and crystallization time 120 min. This work presents a novel route for selective separation of arsenic and potential recycling lead and antimony from the arsenic dust in the NaOH leaching system with adding elemental sulfur.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wikedzi A, Awe SA (2017) Selective extraction of antimony and arsenic from decopperization slime using experimental design. J Sustain Metall 3(2):362–374

    Article  Google Scholar 

  2. Chen Y, Liu N, Ye L, Xiong S, Yang S (2018) A cleaning process for the removal and stabilisation of arsenic from arsenic-rich lead anode slime. J Clean Prod 176:26–35

    Article  CAS  Google Scholar 

  3. Ettler V (2016) Soil contamination near non-ferrous metal smelters: a review. Appl Geochem 64:56–74

    Article  CAS  Google Scholar 

  4. Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation—a critical review. Chemosphere 158:37–49

    Article  CAS  Google Scholar 

  5. Tan C, Li L, Zhong D-P, Wang H, Li K-Z (2018) Separation of arsenic and antimony from dust with high content of arsenic by a selective sulfidation roasting process using sulfur. Trans Nonferr Met Soc China 28(05):1027–1035

    Article  CAS  Google Scholar 

  6. Li Y, Liu Z, Li Q, Liu F, Liu Z (2016) Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts. Hydrometallurgy 166:41–47

    Article  CAS  Google Scholar 

  7. Chena X, Tang X, Rong Z, Liping Wu, Deng P, Wang Y, Li X, Huang L, Dang W (2020) A green strategy toward extraction of cadmium (II) during the transformation from arsenic-rich flue dust to scorodite. Hydrometallurgy 197:105489

    Article  Google Scholar 

  8. Yang T, Hu B, Liu W, Zhang D, Chen L (2018) A novel process for the treatment of copper-smelting waste acid with a high arsenic concentration. Jom 70:2022–2026

    Article  CAS  Google Scholar 

  9. Guo X, Zhang L, Tian Q, Yu D, Jing SHI, Yu YI (2019) Selective removal of As from arsenic-bearing dust rich in Pb and Sb. Trans Nonferr Met Soc China 29:2213–2221

    Article  CAS  Google Scholar 

  10. Yoshida H, Gao X, Koizumi S, Kim S-J, Ueda S, Miki T, Kitamura S-Y (2017) Arsenic removal from contaminated water using the CaO–SiO2–FeO glassy phase in steelmaking slag. J Sustain Metall 3(3):470–485

    Article  Google Scholar 

  11. Yue T, Niu Z, Hu Y, Han H, Sun W, Tian J, Xu Z, Wang L, Yang Y (2019) Arsenic(V) adsorption on ferric oxyhydroxide gel at high alkalinity for securely recycling of arsenic-bearing copper slag. Appl Surf Sci 478:213–220

    Article  CAS  Google Scholar 

  12. Nazari AM, Radzinski R, Ghahreman A (2017) Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 174:258–281

    Article  CAS  Google Scholar 

  13. Guo X, Zhang C, Tian Q, Yu D (2021) Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: a review. Mater Today Commun 26:102007

    Article  CAS  Google Scholar 

  14. Ma X et al (2019) A novel method for preparing an As(V) solution for scorodite synthesis from an arsenic sulphide residue in a Pb refinery. Hydrometallurgy 183:1–8

    Article  CAS  Google Scholar 

  15. Zhong D, Lei LI (2020) Separation of arsenic from arsenic-antimony-bearing dust through selective oxidation-sulfidation roasting with CuS. Trans Nonferr Met Soc China 30:223–235

    Article  CAS  Google Scholar 

  16. Tan C, Li L, Zhong D-P, Wang H, Li K-Z (2018) Separation of arsenic and antimony from dust with high content of arsenic by a selective sulfidation roasting process using sulfur. Trans Nonferr Met Soc China 28:1027–1035

    Article  CAS  Google Scholar 

  17. Yin Z, Lu W, Xiao H (2014) Arsenic removal from copper-silver ore by roasting in vacuum. Vacuum 101:350–353

    Article  CAS  Google Scholar 

  18. Tan C, Li L, Li K, Zhong D (2018) Separation of As from high As-Sb dust using Fe2O3 as a fixative under O2-N2 atmosphere. Sep Purif Technol 194:81–88

    Article  CAS  Google Scholar 

  19. Liu K, Yang J, Hou H, Liang S, Chen Y, Wang J, Liu B, Xiao K, Hu J, Deng H (2019) Facile and cost-effective approach for copper recovery from waste printed circuit boards via a sequential mechanochemical/leaching/recrystallization process. Environ Sci Technol 53:2748–2757

    Article  CAS  Google Scholar 

  20. Gu K, Liu W, Han J, Ou Z, Wu D, Qin W (2019) Arsenic and antimony extraction from high arsenic smelter ash with alkaline pressure oxidative leaching followed by Na2S leaching. Sep Purif Technol 222:53–59

    Article  CAS  Google Scholar 

  21. Zhang X, Tian J, Han H, Sun W, Yuehua Hu, Wang TYL, Yang Y, Cao X, Tang H (2021) Arsenic removal from arsenic-containing copper and cobalt slag using alkaline leaching technology and MgNH4AsO4 precipitation. Sep Purif Technol 238:116422

    Article  Google Scholar 

  22. Zhang Y, Jin B, Huang Y, Song Q, Wang C (2019) Two-stage leaching of zinc and copper from arsenic-rich copper smelting hazardous dusts after alkali leaching of arsenic. Sep Purif Technol 220:250–258

    Article  CAS  Google Scholar 

  23. Gu K, Li W, Han J, Liu W, Qin W, Cai L (2018) Arsenic removal from lead-zinc smelter ash by NaOH-H2O2 leaching. Sep Purif Technol 209:128–135

    Article  Google Scholar 

  24. Nie H, Cao C, Xu Z, Tian L (2020) Novel method to remove arsenic and prepare metal arsenic from copper electrolyte using titanium(IV) oxysulfate coprecipitation and carbothermal reduction. Sep Purif Technol 231:115919

    Article  CAS  Google Scholar 

  25. Han Y, Chen C, Li Y, Zhou L, Lan Y, Li Y (2019) Preparation of Cu-Y binary oxysulfide and its application in the removal of arsenic from aqueous solutions. Sep Purif Technol 213:410–418

    Article  CAS  Google Scholar 

  26. Hubadillah SK, Othman MHD, Ismail AF, Rahman MA, Jaafar J (2019) A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Sep Purif Technol 214:31–39

    Article  CAS  Google Scholar 

  27. Li J-Y, Wang T, Sun Z-H, Wu J-J, Shen D-L, Yuan Q, Li X-X, Chen J (2019) Treatment of high arsenic content lead copper matte by a pressure oxidative leaching combined with cyclone and vertical electro-deposition method. Sep Purif Technol 199:282–288

    Article  Google Scholar 

  28. Isosaari P, Sillanpää M (2012) Effects of oxalate and phosphate on electrokinetic removal of arsenic from mine tailings. Sep Purif Technol 86:26–34

    Article  CAS  Google Scholar 

  29. Yu YI, Shi J, Tian Q-H, Guo X-Y (2015) Arsenic removal from high-arsenic dust by NaOH-Na2S alkaline leaching. Trans Nonferr Met Soc China 25(3):806–814

    Google Scholar 

  30. Tongamp W, Takasaki Y, Shibayama A (2010) Selective leaching of arsenic from enargite in NaHS-NaOH media. Hydrometallurgy 101:64–68

    Article  CAS  Google Scholar 

  31. Raschman P, Smincakova E (2012) Kinetics of leaching of stibnite by mixed Na2S and NaOH solutions. Hydrometallurgy 113:60–66

    Article  Google Scholar 

  32. Park J, Han Y, Lee E, Choi U, Yoo K, Song Y, Kim H (2014) Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Sep Purif Technol 133:291–296

    Article  CAS  Google Scholar 

  33. Zhao Z, Bermudez SC, Ilyas A, Muylaert K, Vankelecom IFJ (2020) Optimization of negatively charged polysulfone membranes for concentration and purification of extracellular polysaccharides from Arthrospira platensis using the response surface methodology. Sep Purif Technol 252:117385

    Article  CAS  Google Scholar 

  34. Smets R, Goos P, Claes J, Van Der Borght M (2021) Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. Sep Purif Technol 258:118040

    Article  CAS  Google Scholar 

  35. Ren J, Li J, Jiang N, Shang K, Lu N, Wu Y (2020) Degradation of trans-ferulic acid in aqueous solution by a water falling film DBD reactor: degradation performance, response surface methodology, reactive species analysis and toxicity evaluation. Sep Purif Technol 235:116226

    Article  CAS  Google Scholar 

  36. Song T, Yao Y, Ni L (2019) Response surface method to study the effect of conical surface and vortex-finder lengths on de-foulant hydrocyclone with reflux ejector. Sep Purif Technol 253:117511

    Article  Google Scholar 

  37. Guo X-Y, Zhang L, Tian Q-H, Qin H (2020) Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea. Hydrometallurgy 194:105330

    Article  CAS  Google Scholar 

  38. Yuhu L, Zhihong L, Qihou L, Zhongwei Z, Zhiyong L, Li Z (2011) Removal of arsenic from Waelz zinc oxide using a mixed NaOH-Na2S leach. Hydrometallurgy 108:165–170

    Article  Google Scholar 

  39. Anderson CG (2012) The metallurgy of antimony. Chem Erde-Geochem 72:3–8

    Article  CAS  Google Scholar 

  40. Lei T, Zhu C-J, Zhang H-P (2009) Antimony metallurgy. Metallurgical Industry Press, Beijing, pp 442–444

    Google Scholar 

  41. Gök G (2014) Catalytic production of antimonate through alkaline leaching of stibnite concentrate. Hydrometallurgy 149:68–74

    Article  Google Scholar 

  42. Han J, Ou Z, Liu W, Jiao F, Qin W (2020) Recovery of antimony and bismuth from tin anode slime after soda roasting-alkaline leaching. Sep Purif Technol 242:116789

    Article  CAS  Google Scholar 

  43. Qin J, Ning S, Fujita T, Wei Y, Zhang S, Lu S (2021) Leaching of indium and tin from waste LCD by a time-efficient method assisted planetary high energy ball milling. Waste Manag 120:193–201

    Article  CAS  Google Scholar 

  44. Vlassopoulos D, Bessinger B, O’Day PA (2010) Aqueous solubility of As2S3 and thermodynamic stability of thioarsenites. In: Birkle P, Torres-Alvarado IS (eds) Water–rock interaction. Taylor & Francis Group, London. ISBN 978-0-415-60426-0

  45. Li W (2013) Synthesis and solubility of arsenic tri-sulfide and sodium arsenic oxy-sulfide complexes in alkaline sulfide solutions. MSc Thesis in Materials Engineering, University of British Columbia, Vancouver, Canada

  46. Liu Z, Yan H, Ma W, Xie K, Xu B, Zheng L (2020) Digestion behavior and removal of sulfur in high-sulfur bauxite during Bayer process. Miner Eng 149:106237

    Article  CAS  Google Scholar 

  47. John J, Evans C, Johnson NW (2020) The influence of lime and sodium hydroxide conditioning on sulfide sulfur behaviour in pyrite flotation. Miner Eng 151:106304

    Article  CAS  Google Scholar 

  48. Gu K, Li W, Han J, Liu W, Qin W, Cai L (2019) Arsenic removal from lead-zinc smelter ash by NaOH-H2O2 leaching. Sep Purif Technol 209:128–135

    Article  CAS  Google Scholar 

  49. Rao S, Wang D, Liu Z, Zhang K, Cao H, Tao J (2019) Selective extraction of zinc, gallium, and germanium from zinc refinery residue using two stage acid and alkaline leaching. Hydrometallurgy 183:38–44

    Article  CAS  Google Scholar 

  50. Dean JA (2003) Lange’s handbook of chemistry. Science Press, Beijing

    Google Scholar 

  51. Brostow W, Gahutishvili M, Gigauri R, Hagg Lobland HE, Japaridze S, Lekishvili N (2010) Separation of natural trivalent oxides of arsenic and antimony. Chem Eng J 159:24–26

    Article  CAS  Google Scholar 

  52. Wang M, Tan Q, Li J (2018) Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries. Environ Sci Technol 52:13136–13143

    Article  CAS  Google Scholar 

  53. Babko AK, Lisetskaya GS (1956) Equilibrium in reactions of formation to thiosalts of tin, antimony and arsenic in solution. Russ J Inorg Chem 1:969–980

    CAS  Google Scholar 

  54. Gayer KH, Garrett AB (1952) The equilibria of antimonous oxide (rhombic) in dilute solutions of hydrochloric acid and sodium hydroxide at 25 °C. J Am Chem Soc 74:2353–2354

    Article  CAS  Google Scholar 

  55. Shahnazi A, Firoozi S, Haghshenas Fatmehsari D (2020) Selective leaching of arsenic from copper converter flue dust by Na2S and its stabilization with Fe2(SO4)3. Trans Nonferr Met Soc China 30:1674–1686

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51922108), Hunan Natural Science Foundation (No. 2019JJ20031), and Hunan Key Research and Development Program (No. 2019SK2061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-yi Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Zhi Sun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Guo, Xy., Tian, Qh. et al. Selective Separation of Arsenic from High-Arsenic Dust in the NaOH-S System Based on Response Surface Methodology. J. Sustain. Metall. 7, 684–703 (2021). https://doi.org/10.1007/s40831-021-00372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00372-0

Keywords

Navigation