Skip to main content
Log in

Elastocaloric Performance of Pseudoelastic NiTi Coiled Wires

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

There is an urgent need to develop an alternative high-efficiency cooling technology that is affordable and environmentally friendly. Elastocaloric effect has attracted particular attention due to large available latent heat and large adiabatic temperature changes. The primary objective of this study is to control the deformation of NiTi solid-state cooling refrigerator simples rapidly and accurately. In the present study, coil specimens made of a pseudoelastic Ni50.8–Ti49.2 (at%) NiTi wires are utilized and elastocaloric effect behavior were studied by evaluating the temperature profiles and the tensile force characteristics during uncoiling-coiling cycle tests conducted at ambient conditions. The measured non-adiabatic temperature changes along the tested NiTi coiled wires varied with the test speed. A maximum temperature change of 13.5 °C was obtained for a speed of 1.2 mm s−1. The uncoiling-coiling test showed to be a suitable method for studying the elastocaloric effect and the mechanical behavior of NiTi alloys. From a practical point of view, pseudoelastic NiTi coiled wire can provide a NiTi wire high strain rate locally, and meanwhile provide a time long enough for heat transferring between active material and heat flow medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cavallini A, Zilio C (2007) Carbon dioxide as a natural refrigerant. Int J Low Carbon Tec 2(3):225–249

    Article  Google Scholar 

  2. Scott JF (2010) Electrocaloric materials. Annu Rev Mater Sci 41(1):229–240

    Article  Google Scholar 

  3. Tishin AM, Spichkin YI (2014) Recent progress in magnetocaloric effect: mechanisms and potential applications. Int J Refrig 37:223–229

    Article  Google Scholar 

  4. Gómez RJ, Garcia FR, Catoira MA, Gómez RM (2013) Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew Sust Energ Rev 17(1):74–82

    Article  Google Scholar 

  5. Tuek J, Engelbrecht K, Millán-Solsona R, Maosa L, Vives E, Mikkelsen LP, Pryds N (2015) The elastocaloric effect: a way to cool efficiently. Adv Energy Mater 5(13):1500361

    Article  Google Scholar 

  6. Liu YF, Shen Q, Wei ZY, Sun W, Liu J (2020) Enhanced barocaloric effect for Pd–In–Fe shape memory alloys with hydrostatic-pressure training. J Appl Phys 127(5):055109

    Article  CAS  Google Scholar 

  7. Wu Y, Ertekin E, Sehitoglu H (2017) Elastocaloric cooling capacity of shape memory alloys: role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater 135(15):158–176

    Article  CAS  Google Scholar 

  8. Chauhan A, Patel S, Vaish R, Bowen CR (2015) A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: challenges and opportunities. MRS Energ Sust 2:E16

    Article  Google Scholar 

  9. Otubo J, Rigo OD, Coelho AA, Neto CM, Mei PR (2008) The influence of carbon and oxygen content on the martensitic transformation temperatures and enthalpies of NiTi shape memory alloy. Mater Sci Eng A 481(1):639–642

    Article  Google Scholar 

  10. Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90(Suppl 16):213–231

    Article  CAS  Google Scholar 

  11. Pieczyska EA, Gadaj SP, Nowacki WK, Tobushi H (2006) Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542

    Article  CAS  Google Scholar 

  12. Schmidt M, Schütze A, Seelecke S (2016) Elastocaloric cooling processes: the influence of material strain and strain rate on efficiency and temperature span. APL Mater 4(6):064107

    Article  Google Scholar 

  13. Pataky GJ, Ertekin E, Sehitoglu H (2015) Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater 96:420–427

    Article  CAS  Google Scholar 

  14. Porenta L, Kabirifar P, Žerovnik A, Cebron M, Žužek B, Dolenec M, Brojan M, Tušek J (2020) Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling. Appl Maters Today 20:100712

    Article  Google Scholar 

  15. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475

    Article  CAS  Google Scholar 

  16. Kauffman GB, Mayo I (1997) The story of Nitinol: the serendipitous discovery of the memory metal and its applications. Chem Edu 2(2):1–21

    Article  Google Scholar 

  17. Qian S, Geng Y, Yi W, Muehlbauer J, Ling J, Hwang Y, Radermacher R, Takeuchi I (2016) Design of a hydraulically driven compressive elastocaloric cooling system. Hvac R Research 22(5):500–506

    Google Scholar 

  18. Ossmer H, Chluba C, Gueltig M, Quandt E, Kohl M (2015) Local evolution of the elastocaloric effect in TiNi-based films. Shape Mem Superelast 1(2):142–152

    Article  Google Scholar 

  19. Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall Trans A 17(1):115–120

    Article  Google Scholar 

  20. Wu Y, Patriarca L, Sehitoglu H, Chumlyakov Y (2016) Ultrahigh tensile transformation strains in new Ni50.5Ti36.2Hf13.3 shape memory alloy. Scripta Mater 118:51–54

    Article  Google Scholar 

  21. Ossmer H, Lambrecht F, Gültig M, Chluba C, Quandt E, Kohl M (2014) Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Mater 81:9–20

    Article  CAS  Google Scholar 

  22. Zhao XK, Wang W, Chen L, Liu JF (2011) Martensitic transformation behaviour of non-equilibrium heat treated Ni509Ti491 alloys. Mater Sci Technol 27(1):437–439

    Article  Google Scholar 

  23. Hou H, Simsek E, Stasak D, Al Hasan N, Qian S, Ott R, Cui J, Takeuchi I (2017) Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat. J Phys D 50(40):404001

    Article  Google Scholar 

  24. Tusek J, Engelbrecht K, Eriksen D, DallOlio S, Tusek J, Pryds N (2016) A regenerative elastocaloric heat pump. Nat Energy 1(10):16134

    Article  CAS  Google Scholar 

  25. Takeuchi I, Sandeman K (2015) Solid-state cooling with caloric materials. Phys Today 68(12):48–54

    Article  CAS  Google Scholar 

  26. Humbeeck JV (2010) Shape memory alloys: a material and a technology. Adv Eng Mater 3(11):837–850

    Article  Google Scholar 

  27. Cui J, Wu Y, Muehlbauer J, Hwang Y, Radermacher R, Fackler S, Wuttig M, Takeuchi I (2012) Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl Phys Lett 101(7):073904

    Article  Google Scholar 

  28. Sehitoglu H, Wu Y, Ertekin E (2017) Elastocaloric effects in the extreme. Scripta Mater 148:122–126

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by (a) Key-Area Research and Development Program of Guangdong Province (2019B90907002) and (b) Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB (BK19BE026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingke Zhao.

Ethics declarations

Conflict of Interest

All authors equally contributed to this work. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Neves, F. & Correia, J.B. Elastocaloric Performance of Pseudoelastic NiTi Coiled Wires. Shap. Mem. Superelasticity 7, 101–108 (2021). https://doi.org/10.1007/s40830-021-00310-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-021-00310-9

Keywords

Navigation