Skip to main content
Log in

Induction Butt Welding Followed by Abnormal Grain Growth: A Promising Route for Joining of Fe–Mn–Al–Ni Tubes

  • SMST2019
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The present study focuses on induction butt welding of Fe–Mn–Al–Ni tubes. By comparing different processing routes, characterized by different temperatures and forces during welding, it was possible to find adequate process parameters for realization of defect-free joints. Moreover, it was feasible to fully reset the microstructure prevailing in the heat-affected zone by a subsequent cyclic heat treatment promoting abnormal grain growth. Tensile testing up to a maximum strain of 6% revealed excellent pseudoelastic properties of the final microstructural condition. The present study shows for the first time that welding with superimposed pressure is well suited for joining of Fe–Mn–Al–Ni shape memory alloys. Furthermore, it is revealed that abnormal grain growth induced by a cyclic heat treatment can be applied independently of the geometry of the component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wayman CM (1971) On memory effects related to martensitic transformations and observations in β-brass and Fe3Pt. Scr Metall 5(6):489–492. https://doi.org/10.1016/0036-9748(71)90097-4

    Article  CAS  Google Scholar 

  2. Koval YUN, Kokorin VV, Khandros LG (1979) The shape-memory effect in iron–nickel–cobalt–titanium alloys. Fiz Met Metalloved 48(6):1309–1311

    CAS  Google Scholar 

  3. Sato A, Chishima E, Soma K et al (1982) Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30(6):1177–1183. https://doi.org/10.1016/0001-6160(82)90011-6

    Article  CAS  Google Scholar 

  4. Tanaka Y, Himuro Y, Kainuma R et al (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490. https://doi.org/10.1126/science.1183169

    Article  CAS  Google Scholar 

  5. Chumlyakov YI, Kireeva IV, Poklonov VV et al (2014) The shape-memory effect and superelasticity in single-crystal ferromagnetic alloy FeNiCoAlTi. Tech Phys Lett 40(9):747–750. https://doi.org/10.1134/S1063785014090053

    Article  CAS  Google Scholar 

  6. Chumlyakov YI, Kireeva IV, Kuts OA et al (2015) Shape memory effect and superelasticity in [001] single crystals of Fe–Ni–Co–Al–Nb(B) ferromagnetic alloy. Russ Phys J 58(7):889–897. https://doi.org/10.1007/s11182-015-0587-5

    Article  CAS  Google Scholar 

  7. Ma J, Hornbuckle BC, Karaman I et al (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61(9):3445–3455. https://doi.org/10.1016/j.actamat.2013.02.036

    Article  CAS  Google Scholar 

  8. Omori T, Abe S, Tanaka Y et al (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69(11–12):812–815. https://doi.org/10.1016/j.scriptamat.2013.09.006

    Article  CAS  Google Scholar 

  9. Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J Alloy Compd 617:120–123. https://doi.org/10.1016/j.jallcom.2014.07.136

    Article  CAS  Google Scholar 

  10. Krooß P, Niendorf T, Karaman I et al (2012) Cyclic deformation behavior of aged FeNiCoAlTa single crystals. Funct Mater Lett 05(04):1250045. https://doi.org/10.1142/S1793604712500452

    Article  CAS  Google Scholar 

  11. Omori T, Ando K, Okano M et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333(6038):68–71. https://doi.org/10.1126/science.1202232

    Article  CAS  Google Scholar 

  12. Vollmer M, Krooß P, Karaman I et al (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23. https://doi.org/10.1016/j.scriptamat.2016.08.002

    Article  CAS  Google Scholar 

  13. Vollmer M, Arold T, Kriegel MJ et al (2019) Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments. Nat Commun 10(1):1. https://doi.org/10.1038/s41467-019-10308-8

    Article  CAS  Google Scholar 

  14. Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1(3):32103. https://doi.org/10.1063/1.4820429

    Article  CAS  Google Scholar 

  15. Tseng LW, Ma J, Vollmer M et al (2016) Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scr Mater 125:68–72. https://doi.org/10.1016/j.scriptamat.2016.07.036

    Article  CAS  Google Scholar 

  16. Vollmer M, Segel C, Krooß P et al (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scr Mater 108:23–26. https://doi.org/10.1016/j.scriptamat.2015.06.013

    Article  CAS  Google Scholar 

  17. Ueland SM, Chen Y, Schuh CA (2012) Oligocrystalline shape memory alloys. Adv Funct Mater 22(10):2094–2099. https://doi.org/10.1002/adfm.201103019

    Article  CAS  Google Scholar 

  18. Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60(1):282–292. https://doi.org/10.1016/j.actamat.2011.09.054

    Article  CAS  Google Scholar 

  19. Ueland SM, Schuh CA (2013) Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J Appl Phys 114(5):53503. https://doi.org/10.1063/1.4817170

    Article  CAS  Google Scholar 

  20. Ueland SM (2013) Grain constraint and size effects in shape memory alloy microwires, Massachusetts Institute of Technology

  21. Xie J-X, Liu J-L, Huang H-Y (2015) Structure design of high-performance Cu-based shape memory alloys. Rare Met 34(9):607–624. https://doi.org/10.1007/s12598-015-0557-7

    Article  CAS  Google Scholar 

  22. Vollmer M, Krooß P, Segel C et al (2015) Damage evolution in pseudoelastic polycrystalline Co–Ni–Ga high-temperature shape memory alloys. J Alloy Compd 633:288–295. https://doi.org/10.1016/j.jallcom.2015.01.282

    Article  CAS  Google Scholar 

  23. Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269. https://doi.org/10.1016/j.matdes.2016.04.011

    Article  CAS  Google Scholar 

  24. Vollmer M, Krooß P, Kriegel MJ et al (2016) Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys—the role of grain orientation. Scr Mater 114:156–160. https://doi.org/10.1016/j.scriptamat.2015.12.007

    Article  CAS  Google Scholar 

  25. Omori T, Kusama T, Kawata S et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341(6153):1500–1502. https://doi.org/10.1126/science.1238017

    Article  CAS  Google Scholar 

  26. Kusama T, Omori T, Saito T et al (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8(1):354. https://doi.org/10.1038/s41467-017-00383-0

    Article  CAS  Google Scholar 

  27. Zeng Z, Yang M, Oliveira JP et al (2016) Laser welding of NiTi shape memory alloy wires and tubes for multi-functional design applications. Smart Mater Struct 25(8):85001. https://doi.org/10.1088/0964-1726/25/8/085001

    Article  CAS  Google Scholar 

  28. Oliveira JP, Zeng Z, Omori T et al (2016) Improvement of damping properties in laser processed superelastic Cu-Al-Mn shape memory alloys. Mater Des 98:280–284. https://doi.org/10.1016/j.matdes.2016.03.032

    Article  CAS  Google Scholar 

  29. Oliveira JP, Crispim B, Zeng Z et al (2019) Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rods. J Mater Process Technol 271:93–100. https://doi.org/10.1016/j.jmatprotec.2019.03.020

    Article  CAS  Google Scholar 

  30. Oliveira JP, Zeng Z, Berveiller S et al (2018) Laser welding of Cu-Al-Be shape memory alloys: microstructure and mechanical properties. Mater Des 148:145–152. https://doi.org/10.1016/j.matdes.2018.03.066

    Article  CAS  Google Scholar 

  31. Krooß P, Günther J, Halbauer L et al (2017) Electron beam welding of Fe–Mn–Al–Ni shape memory alloy: microstructure evolution and shape memory response. Funct Mater Lett 10(04):1750043. https://doi.org/10.1142/S1793604717500436

    Article  CAS  Google Scholar 

  32. Omori T, Nagasako M, Okano M et al (2012) Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101(23):231907. https://doi.org/10.1063/1.4769375

    Article  CAS  Google Scholar 

  33. Tseng LW, Ma J, Hornbuckle BC et al (2015) The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244. https://doi.org/10.1016/j.actamat.2015.06.061

    Article  CAS  Google Scholar 

  34. ASM International (2011) ASM handbook. ASM International, Metals Park

    Google Scholar 

  35. Walnsch A, Kriegel MJ, Fabrichnaya O et al (2019) Thermodynamic assessment and experimental investigation of the systems Al–Fe–Mn and Al–Fe–Mn–Ni. Calphad 66:101621. https://doi.org/10.1016/j.calphad.2019.04.006

    Article  CAS  Google Scholar 

  36. Vollmer M, Kriegel MJ, Walnsch A et al (2019) On the microstructural and functional stability of Fe-Mn-Al-Ni at ambient and elevated temperatures. Scr Mater 162:442–446. https://doi.org/10.1016/j.scriptamat.2018.12.008

    Article  CAS  Google Scholar 

  37. Ozcan H, Ma J, Wang SJ et al (2017) Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scr Mater 134:66–70. https://doi.org/10.1016/j.scriptamat.2017.02.023

    Article  CAS  Google Scholar 

  38. Abuzaid W, Wu Y, Sidharth R et al (2019) FeMnNiAl iron-based shape memory alloy: promises and challenges. Shape Mem Superelast 1(333):C4–199. https://doi.org/10.1007/s40830-019-00230-9

    Article  Google Scholar 

  39. Vallejos JM, Malarría JA (2019) Growing Fe-Mn-Al-Ni single crystals by combining directional annealing and thermal cycling. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2019.116317

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by German Research Foundation (Project No. 400008732 (NI 1327/20–1)) is gratefully acknowledged. TN acknowledges support by University of Kassel within the SmartCon project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vollmer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollmer, M., Baunack, D., Janoschka, D. et al. Induction Butt Welding Followed by Abnormal Grain Growth: A Promising Route for Joining of Fe–Mn–Al–Ni Tubes. Shap. Mem. Superelasticity 6, 131–138 (2020). https://doi.org/10.1007/s40830-019-00261-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-019-00261-2

Keywords

Navigation