Skip to main content

Advertisement

Log in

Effect of Heat Input on Microstructure and Mechanical Properties of Automated Tungsten Inert Gas-Welded Dissimilar AA6061-T6 and AA7075-T6 Joints

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study explored the heat input effects on automated TIG welded dissimilar AA6061-T6 and AA7075-T6 joints using filler ER5356. Three heat input welded samples, namely HI1 (0.73 kJ/mm), HI2 (1.69 kJ/mm), and HI3 (2.27 kJ/mm), were utilized and their corresponding microstructure and grain boundary features were investigated and correlated with the joint’s mechanical properties. Electron backscattered diffraction (EBSD) results showed that the low-angle grain boundaries (LAGBs) in the base alloys transformed into high-angle grain boundaries (HAGBs) in the fusion zone (FZ) after welding. However, the grain boundary transformations were more pronounced in the high heat input welded sample HI3. Pole figures revealed strong dominance of \({\mathrm{A}}_{1}^{*}\)/\({\mathrm{A}}_{2}^{*}\) and A/\(\stackrel{\mathrm{-}}{\mathrm{A}}\) textures with a small amount of C and B/\(\stackrel{\mathrm{-}}{\mathrm{B}}\) textures at the FZ for all the heat input joints. Orientation distribution functions also exhibited the recrystallization textures P {011} <112> and Goss {110} <001> , plane strain texture S {123} <634> with some deformation texture H {001} <110> at the FZ center. The medium heat input sample HI2 had the highest tensile strength of 182 MPa, elongation of 14.4%, and flexural strength of 202 MPa; while, the welded sample HI1 had the highest microhardness of 81 HV when compared to other welded samples. The HI2 joint fracture surface exhibits fine dimples devoid of porosities, suggesting ductile fracture manner. However, the fracture surface of the HI3 joint displayed both smooth and rough cleavage facets with coarser dimples, resulting in a combination of ductile and brittle fracture modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing and L. Garcia, Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding of 6061-to-7050 Aluminum Alloys, Mater. Des., 2015, 83, p 60–65. https://doi.org/10.1016/j.matdes.2015.05.074

    Article  CAS  Google Scholar 

  2. H. Mehdi and R.S. Mishra, Consequence of Reinforced SiC Particles on Microstructural and Mechanical Properties of AA6061 Surface Composites by Multi-pass FSP, J. Adhes. Sci. Technol.Adhes. Sci. Technol., 2022, 36, p 1279–1298. https://doi.org/10.1080/01694243.2021.1964846

    Article  CAS  Google Scholar 

  3. R.S. Mishra, Z.Y. Ma and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310. https://doi.org/10.1016/S0921-5093(02)00199-5

    Article  Google Scholar 

  4. M. Paidar, R. VairaVignesh, A. Moharrami, O.O. Ojo, A. Jafari and S. Sadreddini, Development and Characterization of Dissimilar Joint Between AA2024-T3 and AA6061-T6 by Modified Friction Stir Clinching Process, Vacuum, 2020, 176, p 109298. https://doi.org/10.1016/j.vacuum.2020.109298

    Article  CAS  Google Scholar 

  5. S. Memon, M. Paidar, O.O. Ojo, K. Cooke, B. Babaei and M. Masoumnezhad, The Role of Stirring Time on the Metallurgical and Mechanical Properties during Modified Friction Stir Clinching of AA6061-T6 and AA7075-T6 Sheets, Results Phys., 2020 https://doi.org/10.1016/j.rinp.2020.103364

    Article  Google Scholar 

  6. Z. Liu, K. Yang and D. Yan, Refill Friction Stir Spot Welding of Dissimilar 6061/7075 Aluminum Alloy, High Temp. Mater. Processes (London), 2019, 38, p 69–75. https://doi.org/10.1515/htmp-2017-0139

    Article  CAS  Google Scholar 

  7. F. Ozturk, A. Sisman, S. Toros, S. Kilic and R.C. Picu, Influence of Aging Treatment on Mechanical Properties of 6061 Aluminum Alloy, Mater. Des., 2010, 31, p 972–975. https://doi.org/10.1016/j.matdes.2009.08.017

    Article  CAS  Google Scholar 

  8. M. Temmar, M. Hadji and T. Sahraoui, Effect of Post-weld Aging Treatment on Mechanical Properties of Tungsten Inert Gas welded low Thickness 7075 Aluminium Alloy Joints, Mater. Des., 2011, 32, p 3532–3536. https://doi.org/10.1016/j.matdes.2011.02.011

    Article  CAS  Google Scholar 

  9. M. Hakem, S. Lebaili, S. Mathieu, D. Miroud, A. Lebaili and B. Cheniti, Effect of Microstructure and Precipitation Phenomena on the Mechanical Behavior of AA6061-T6 Aluminum Alloy Weld, Int. J. Adv. Manuf. Technol., 2019, 102, p 2907–2918. https://doi.org/10.1007/s00170-019-03401-1

    Article  Google Scholar 

  10. P. Bahemmat, M. Haghpanahi, M.K. Besharati, S. Ahsanizadeh and H. Rezaei, Study on Mechanical, Micro-, and Macrostructural Characteristics of Dissimilar Friction Stir Welding of AA6061-T6 and AA7075-T6, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 2010, 224, p 1854–1865. https://doi.org/10.1243/09544054JEM1959

    Article  Google Scholar 

  11. S. Jain, R.S. Mishra, H. Mehdi, R. Gupta and A.K. Dubey, Optimization of Processing Variables of Friction Stir Welded Dissimilar Composite Joints of AA6061 and AA7075 using Response Surface Methodology, J. Adhes. Sci. Technol.Adhes. Sci. Technol., 2023 https://doi.org/10.1080/01694243.2023.2243682

    Article  Google Scholar 

  12. B.C. Evik and M. Koç, The Effects of Welding Speed on the Microstructure and Mechanical Properties of Marine-grade Aluminium (AA5754) Alloy Joined using MIG Welding, Metallic Materials/Kovové Materiály, 2019, 57, p 307–316.

    Google Scholar 

  13. M. Ishak, N.F. Mohd Noordin and L.H. Ahmad Shah, Feasibility Study on Joining Dissimilar Aluminum Alloys AA6061 and AA7075 by Tungsten Inert Gas (TIG), J. Teknol., 2015 https://doi.org/10.11113/jt.v75.5177

    Article  Google Scholar 

  14. S.S. Kumar and G. Godwin, An Enhancement of Properties on Al7075 and Al6061 Dissimilar Materials Welded by TIG Process, Int. Res. J. Adv. Sci. Hub, 2020, 2, p 115–121. https://doi.org/10.47392/irjash.2020.47

    Article  Google Scholar 

  15. M.S. Bin Reyaz and A.N. Sinha, Analysis of Mechanical Properties and Optimization of Tungsten Inert Gas Welding Parameters on Dissimilar AA6061-T6 and AA7075-T6 by a Response Surface Methodology-Based Desirability Function Approach, Eng. Optim.Optim., 2023 https://doi.org/10.1080/0305215X.2023.2230133

    Article  Google Scholar 

  16. G. İpekoğlu, S. Erim and G. Çam, Investigation into the Influence of Post-Weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates with Different Temper Conditions, Metall. and Mater. Trans. A., 2014, 45, p 864–877. https://doi.org/10.1007/s11661-013-2026-y

    Article  CAS  Google Scholar 

  17. G. İpekoğlu and G. Çam, Effects of Initial Temper Condition and Postweld Heat Treatment on the Properties of Dissimilar Friction-Stir-Welded Joints between AA7075 and AA6061 Aluminum Alloys, Metall. Mater. Trans. A, 2014, 45, p 3074–3087. https://doi.org/10.1007/s11661-014-2248-7

    Article  CAS  Google Scholar 

  18. G. Çam, G. İpekoğlu and S.H. Tarık, Effects of use of Higher Strength Interlayer and External Cooling on Properties of Friction Stir Welded AA6061-T6 Joints, Sci. Technol. Weld. Joining, 2014, 19, p 715–720. https://doi.org/10.1179/1362171814Y.0000000247

    Article  CAS  Google Scholar 

  19. G. Çam and G. İpekoğlu, Recent Developments in Joining of Aluminum Alloys, Int. J. Adv. Manuf. Technol., 2017, 91, p 1851–1866. https://doi.org/10.1007/s00170-016-9861-0

    Article  Google Scholar 

  20. N. Kashaev, V. Ventzke and G. Çam, Prospects of Laser Beam Welding and Friction Stir Welding Processes for Aluminum Airframe Structural Applications, J. Manuf. Process., 2018, 36, p 571–600. https://doi.org/10.1016/j.jmapro.2018.10.005

    Article  Google Scholar 

  21. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich et al., Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution, Prog. Mater. Sci. Mater. Sci., 2021, 117, p 100752. https://doi.org/10.1016/j.pmatsci.2020.100752

    Article  CAS  Google Scholar 

  22. A. Yürük, B. Çevik and N. Kahraman, Analysis of Mechanical and Microstructural Properties of Gas Metal Arc Welded Dissimilar Aluminum Alloys (AA5754/AA6013), Mater. Chem. Phys., 2021 https://doi.org/10.1016/j.matchemphys.2021.125117

    Article  Google Scholar 

  23. A.O. Al-Roubaiy, S.M. Nabat and A.D.L. Batako, Experimental and Theoretical Analysis of Friction Stir Welding of Al-Cu Joints, Int. J. Adv. Manuf. Technol., 2014, 71, p 1631–1642. https://doi.org/10.1007/s00170-013-5563-z

    Article  Google Scholar 

  24. L. Kaba, M.E. Djeghlal, S. Ouallam and S. Kahla, Dissimilar Welding of Aluminum Alloys 2024 T3 and 7075 T6 by TIG Process with Double Tungsten Electrodes, Int. J. Adv. Manuf. Technol., 2022, 118, p 937–948. https://doi.org/10.1007/s00170-021-07888-5/Published

    Article  Google Scholar 

  25. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Mechanical Properties and Wear Resistance of Tungsten Inert Gas Welded Joint of Dissimilar Aluminum Alloys, J. Mater. Eng. Perform., 2021, 30, p 1926–1937. https://doi.org/10.1007/s11665-021-05549-y

    Article  CAS  Google Scholar 

  26. Tanmay and S.S. Panda, Characterisation of Cu–Al Alloy Lap Joint using TIG Welding, CIRP J. Manuf. Sci. Technol., 2021, 35, p 454–459. https://doi.org/10.1016/j.cirpj.2021.07.009

    Article  Google Scholar 

  27. S. Jain and R.S. Mishra, A Review of the Effect of Process Parameters and Temperature Variation on FSWed Dissimilar Aluminium Alloys AA7075 and AA6061, Emerging Trends Mech. Ind. Eng. Select Procee. ICETMIE, 2023 https://doi.org/10.1007/978-981-19-6945-4_64

    Article  Google Scholar 

  28. R. Crushan and V.P. Ashoka, Optimization of Dissimilar AA5052-H32 and AA5083-H111 Aluminium FSW Joints with Scandium Interfacial Layer, Mater. Manuf. Processes, 2023, 38, p 1372–1384. https://doi.org/10.1080/10426914.2023.2165672

    Article  CAS  Google Scholar 

  29. M. Raturi, A. Garg and A. Bhattacharya, Joint Strength and Failure Studies of Dissimilar AA6061-AA7075 Friction Stir Welds: Effects of Tool Pin, Process Parameters and Preheating, Eng. Fail. Anal., 2019, 96, p 570–588. https://doi.org/10.1016/j.engfailanal.2018.12.003

    Article  CAS  Google Scholar 

  30. A. Garg, M. Raturi, A. Garg and A. Bhattacharya, Microstructure Evolution and Mechanical Properties of Double-sided Friction Stir Welding between AA6061-T6 and AA7075-T651, CIRP J. Manuf. Sci. Technol., 2020, 31, p 431–438. https://doi.org/10.1016/j.cirpj.2020.07.005

    Article  Google Scholar 

  31. C. Chen, G. Sun, W. Du, Y. Li, C. Fan and H. Zhang, Influence of Heat Input on the Appearance, Microstructure and Microhardness of Pulsed Gas Metal Arc Welded Al Alloy Weldment, J. Market. Res., 2022, 21, p 121–130. https://doi.org/10.1016/j.jmrt.2022.09.028

    Article  CAS  Google Scholar 

  32. H. Rojas, A. Molina, S. Valdez, B. Campillo, H. Martínez, A. Sedano et al., The Impact of Heat Input on the Microstructures, Fatigue Behaviors, and Stress Lives of TIG-welded 6061–T6 Alloy Joints, Mater. Res. Express, 2020, 7, p 126512. https://doi.org/10.1088/2053-1591/abd136

    Article  CAS  Google Scholar 

  33. M. Samiuddin, J. Li, M. Taimoor, M.N. Siddiqui, S.U. Siddiqui and J. Xiong, Investigation on the Process Parameters of TIG-welded Aluminum Alloy Through Mechanical and Microstructural Characterization, Def. Technol., 2021, 17, p 1234–1248. https://doi.org/10.1016/j.dt.2020.06.012

    Article  Google Scholar 

  34. B. Çevik, Gas Tungsten Arc Welding of 7075 Aluminum Alloy: Microstructure Properties, Impact Strength, and Weld Defects, Mater. Res. Express, 2018, 5, p 066540. https://doi.org/10.1088/2053-1591/aacbbc

    Article  CAS  Google Scholar 

  35. M.S. Bin Reyaz and A.N. Sinha, An Experimental Investigation on Mechanical Characteristics and Wear Behaviour of TIG Welded Dissimilar Aluminum Alloys, J. Adhes. Sci. Technol.Adhes Sci Technol, 2023 https://doi.org/10.1080/01694243.2023.2251782

    Article  Google Scholar 

  36. N. Çömez and H. Durmuş, Mechanical Properties and Corrosion Behavior of AA5754-AA6061 Dissimilar Aluminum Alloys Welded by Cold Metal Transfer, J. Mater. Eng. Perform., 2019, 28, p 3777–3784. https://doi.org/10.1007/s11665-019-04131-x

    Article  CAS  Google Scholar 

  37. H. Ma, G. Qin, P. Geng, Z. Ao and Y. Chen, Effect of Intermetallic Compounds on the Mechanical Property and Corrosion Behaviour of Aluminium Alloy/steel Hybrid Fusion-brazed Welded Structure, J. Manuf. Process., 2022, 75, p 170–180. https://doi.org/10.1016/j.jmapro.2022.01.004

    Article  Google Scholar 

  38. Z. Ye, J. Huang, W. Gao, Y. Zhang, Z. Cheng, S. Chen et al., Microstructure and Mechanical Properties of 5052 Aluminum Alloy/mild Steel butt Joint Achieved by MIG-TIG Double-sided Arc Welding-brazing, Mater. Des., 2017, 123, p 69–79. https://doi.org/10.1016/j.matdes.2017.03.039

    Article  CAS  Google Scholar 

  39. Q. Qin, H. Zhao, J. Li, Y. Zhang, B. Zhang and X. Su, Microstructures and Mechanical Properties of TIG Welded Al-Mg2Si Alloy Joints, J. Manuf. Process., 2020, 56, p 941–949. https://doi.org/10.1016/j.jmapro.2020.05.058

    Article  Google Scholar 

  40. Y. Guo, Y. Ma, X. Zhang, X. Qian and J. Li, Study on Residual Stress Distribution of 2024–T3 and 7075–T6 Aluminum Dissimilar Friction Stir Welded Joints, Eng. Fail. Anal., 2020 https://doi.org/10.1016/j.engfailanal.2020.104911

    Article  Google Scholar 

  41. B. Wang, B.B. Lei, J.X. Zhu, Q. Feng, L. Wang and D. Wu, EBSD Study on Microstructure and Texture of Friction Stir Welded AA5052-O and AA6061-T6 Dissimilar Joint, Mater. Des., 2015, 87, p 593–599. https://doi.org/10.1016/j.matdes.2015.08.060

    Article  CAS  Google Scholar 

  42. H. Mehdi and R.S. Mishra, Microstructure and Mechanical Characterization of Tungsten Inert Gas-welded Joint of AA6061 and AA7075 by Friction Stir Processing, Procee. Inst. Mech. Eng. Part L J. Mater. Design Appl., 2021, 235, p 2531–2546. https://doi.org/10.1177/14644207211007882

    Article  CAS  Google Scholar 

  43. R. Yamada, S. Ishizawa, G. Itoh, A. Kurumada, and M. Nakai. Effects of Environment on Fatigue Crack Growth Behavior of 2000 and 7000 Series Aluminum Alloys. Recent Advances in Structural Integrity Analysis - Proceedings of the International Congress (APCF/SIF-2014), Elsevier; 2014, pp 123–6. https://doi.org/10.1533/9780081002254.123.

  44. C. Rathinasuriyan and V.S.S. Kumar, Mechanical and Metallurgical Properties of GTAW, GMAW and FSW Lap Joints on AA6061-T6 Alloy, Adv. Mater. Processing Technol., 2022, 8, p 3231–3247. https://doi.org/10.1080/2374068X.2021.1946322

    Article  Google Scholar 

  45. G.M.D. Cantin and J.A. Francis, Arc Power and Efficiency in Gas Tungsten Arc Welding of Aluminium, Sci. Technol. Weld. Joining, 2005, 10, p 200–210. https://doi.org/10.1179/174329305X37033

    Article  CAS  Google Scholar 

  46. N. Stenbacka, I. Choquet, and K. Hurtig. Review of arc efficiency values for gas tungsten arc welding. IIW Commission IV-XII-SG212, Intermediate Meeting, BAM, Berlin, Germany, 2012, pp 18–20

  47. Y. Koli, N. Yuvaraj, S. Aravindan and Vipin, CMT Joining of AA6061-T6 and AA6082-T6 and Examining Mechanical Properties and Microstructural Characterization, Trans. Indian Inst. Metals, 2021, 74, p 313–329. https://doi.org/10.1007/s12666-020-02134-0

    Article  CAS  Google Scholar 

  48. D. Peng, J. Shen, Q. Tang, C.P. Wu and Y.B. Zhou, Effects of Aging Treatment and Heat Input on the Microstructures and Mechanical Properties of TIG-welded 6061–T6 Alloy Joints, Int. J. Miner. Metall. Mater., 2013, 20, p 259–265. https://doi.org/10.1007/s12613-013-0721-8

    Article  CAS  Google Scholar 

  49. G. Song, Z. Wang, Z. Liu and L. Liu, Effect of Partial Rolling on the Microstructure and Mechanical Properties of Laser-TIG Hybrid Welded Joints of 7075–T6 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2022, 121, p 589–599. https://doi.org/10.1007/s00170-022-09287-w

    Article  Google Scholar 

  50. N. Çömez and H. Durmus, Cold Metal Transfer Welding of AA6061 to AA7075: Mechanical Properties and Corrosion, J. Eng. Mater. Technol. Trans. ASME, 2019 https://doi.org/10.1115/1.4042863

    Article  Google Scholar 

  51. I. Sevim, F. Hayat, Y. Kaya, N. Kahraman and S. Şahin, The Study of MIG Weldability of Heat-treated Aluminum Alloys, Int. J. Adv. Manuf. Technol., 2013, 66, p 1825–1834. https://doi.org/10.1007/s00170-012-4462-z

    Article  Google Scholar 

  52. A.H. Eftekhar, S.M. Sadrossadat and M. Reihanian, Effect of Heat Input on Microstructure and Mechanical Properties of TIG-welded Semisolid Cast AXE622 Mg Alloy, Mater CharactCharact., 2022 https://doi.org/10.1016/j.matchar.2021.111692

    Article  Google Scholar 

  53. C. Liu, D.O. Northwood and S.D. Bhole, Tensile Fracture Behavior in CO2 Laser Beam Welds of 7075–T6 Aluminum Alloy, Mater. Des.Des., 2004, 25, p 573–577. https://doi.org/10.1016/j.matdes.2004.02.017

    Article  CAS  Google Scholar 

  54. S. Li, H. Dong, X. Wang, Z. Liu, Z. Tan, L. Shangguan et al., Effect of Repair Welding on Microstructure and Mechanical Properties of 7N01 Aluminum Alloy MIG Welded Joint, J. Manuf. Process., 2020, 54, p 80–88. https://doi.org/10.1016/j.jmapro.2020.03.009

    Article  Google Scholar 

  55. H. Zhao, Q. Pan, Q. Qin, Y. Wu and X. Su, Effect of the Processing Parameters of Friction Stir Processing on the Microstructure and Mechanical Properties of 6063 Aluminum Alloy, Mater. Sci. Eng. A, 2019, 751, p 70–79. https://doi.org/10.1016/j.msea.2019.02.064

    Article  CAS  Google Scholar 

  56. M. Verma and P. Saha, Effect of Micro-grooves Featured Tool and their Depths on Dissimilar Micro-friction Stir Welding (μFSW) of Aluminum Alloys: A Study of Process Responses and Weld Characteristics, Mater. CharactCharact, 2023, 196, p 112614. https://doi.org/10.1016/j.matchar.2022.112614

    Article  CAS  Google Scholar 

  57. H. Zhao, M. Yu, Z. Jiang, L. Zhou and X. Song, Interfacial Microstructure and Mechanical Properties of Al/Ti Dissimilar Joints Fabricated via Friction Stir Welding, J. Alloys Compd., 2019, 789, p 139–149. https://doi.org/10.1016/j.jallcom.2019.03.043

    Article  CAS  Google Scholar 

  58. N.S. Biradar and R. Raman, Grain Refinement in Al-Mg-Si Alloy TIG Welds using Transverse Mechanical Arc Oscillation, J. Mater. Eng. Perform., 2012, 21, p 2495–2502. https://doi.org/10.1007/s11665-012-0207-2

    Article  CAS  Google Scholar 

  59. R.W. Fonda and J.F. Bingert, Texture Variations in an Aluminum Friction Stir Weld, Scr. Mater., 2007, 57, p 1052–1055. https://doi.org/10.1016/j.scriptamat.2007.06.068

    Article  CAS  Google Scholar 

  60. M. Verma and P. Saha, Effect of Micro-grooves Featured Tool and their Depths on Dissimilar Micro-friction Stir Welding (μFSW) of Aluminum Alloys: A Study of Process Responses and Weld Characteristics, Mater CharactCharact., 2023 https://doi.org/10.1016/j.matchar.2022.112614

    Article  Google Scholar 

  61. M. Raturi and A. Bhattacharya, Microstructure and Texture Correlation of Secondary Heating Assisted Dissimilar Friction Stir Welds of Aluminum Alloys, Mater. Sci. Eng. A, 2021 https://doi.org/10.1016/j.msea.2021.141891

    Article  Google Scholar 

  62. J. Li, H. Li, Y. Liang, P. Liu and L. Yang, The Microstructure and Mechanical Properties of Multi-strand, Composite Welding-wire Welded Joints of High Nitrogen Austenitic Stainless Steel, Materials, 2019 https://doi.org/10.3390/ma12182944

    Article  Google Scholar 

  63. O.G. Rivera, P.G. Allison, L.N. Brewer, O.L. Rodriguez, J.B. Jordon, T. Liu et al., Influence of Texture and Grain Refinement on the Mechanical Behavior of AA2219 Fabricated by High Shear Solid State Material Deposition, Mater. Sci. Eng. A, 2018, 724, p 547–558. https://doi.org/10.1016/j.msea.2018.03.088

    Article  CAS  Google Scholar 

  64. C.D. Lee, Effect of Grain Size on the Tensile Properties of Magnesium Alloy, Mater. Sci. Eng. A, 2007, 459, p 355–360. https://doi.org/10.1016/j.msea.2007.01.008

    Article  CAS  Google Scholar 

  65. M. Tariq, I. Khan, G. Hussain and U. Farooq, Microstructure and Micro-Hardness Analysis of Friction Stir Welded Bi-layered Laminated Aluminum Sheets, Int. J. Lightweight Mater. Manuf., 2019, 2, p 123–130. https://doi.org/10.1016/j.ijlmm.2019.04.010

    Article  Google Scholar 

  66. M.P. Alam and A.N. Sinha, Effect of Heat Assisting Backing Plate in Friction Stir Welding of High Strength Al-Li Alloy, Energy Sour. Part A Recovery Util. Environ. Effects, 2022, 44, p 2851–2862. https://doi.org/10.1080/15567036.2019.1651793

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge OIM and Texture Laboratory, the Department of Metallurgical Engineering and Materials Science (MEMS) at Indian Institute of Technology Bombay, Powai, Mumbai, for their assistance in EBSD characterization, which helped complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Saquib Bin Reyaz.

Ethics declarations

Conflict of interest

Authors in the present study did not report any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyaz, M.S.B., Sinha, A.N. Effect of Heat Input on Microstructure and Mechanical Properties of Automated Tungsten Inert Gas-Welded Dissimilar AA6061-T6 and AA7075-T6 Joints. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09026-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09026-6

Keywords

Navigation