Skip to main content
Log in

Cattaneo-LTNE Effects on the Stability of Brinkman Convection in an Anisotropic Porous Layer

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The stability of Brinkman local thermal nonequilibrium anisotropic porous convection under the impact of Cattaneo law of heat conduction in solid is investigated. In the analysis, anisotropies in permeability and thermal (solid and fluid phases) conductivities are highlighted. Condition for stationary onset and oscillatory onset is obtained by carrying out linear instability analysis. A novel result is that the instability occurs through oscillatory mode against the stationary convection perceived in the absence of Cattaneo effect. The relative magnitudes of governing parameters on the initiation of oscillatory instability are delineated in detail. The thermal and mechanical anisotropies inflict stabilizing and destabilizing effects on the onset, respectively. The influence of mechanical anisotropy, thermal anisotropy of fluid, thermal relaxation time parameters and the Darcy number is to broaden the size of convection cells whereas thermal anisotropy of the solid and the Darcy-Prandtl number demonstrate a mixed behaviour. A first order amplitude equation is derived separately for steady and overstable modes by performing a weak nonlinear stability analysis using a modified multiscale method. Depending on the values of governing parameters, it is seen that the stationary mode bifurcates subcritically and supercritically, while the oscillatory mode always bifurcates supercritically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Banu, N., Rees, D.A.S.: Onset of Darcy-Bénard convection using a thermal nonequilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  Google Scholar 

  2. Malashetty, M.S., Shivakumara, I.S., Kulkarni, S.: The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)

    Article  Google Scholar 

  3. Shivakumara, I.S., Mamatha, A.L., Ravisha, M.: Effects of variable viscosity and density maximum on the onset of Darcy-Bénard convection using a thermal non-equilibrium model. J. Porous Med. 13, 613–622 (2010)

    Article  Google Scholar 

  4. Shivakumara, I.S., Lee, J., Ravisha, M., Gangadhara Reddy, R.: The effects of local thermal nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection. Meccanica 47, 1359–1378 (2012)

    Article  MathSciNet  Google Scholar 

  5. Barletta, A., Rees, D.A.S.: Local thermal non-equilibrium effects in the Darcy– Bénard instability with isoflux boundary conditions. Int. J. Heat Mass Transf. 55, 384–394 (2012)

    Article  Google Scholar 

  6. Barletta, A., Rees, D.A.S.: Local thermal non-equilibrium analysis of the thermoconvective instability in an inclined porous layer. Int. J. Heat Mass Transf. 83, 327–336 (2015)

    Article  Google Scholar 

  7. Straughan, B.: Convection with Local Thermal Nonequilibrium and Microfluidic Effects. Springer, Heidelberg (2015)

    Book  Google Scholar 

  8. Straughan, B.: Stability and Wave Motion in Porous Media, pp. 1–45. Springer, New York (2008)

    MATH  Google Scholar 

  9. Nield, D.A., Bejan, A.: Convection in Porous Media, 5th edn. Springer, New York (2017)

    Book  Google Scholar 

  10. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  11. Straughan, B.: Heat waves, Series in Applied Math Science, vol. 177. Springer, New York (2011)

    Google Scholar 

  12. Straughan, B.: Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid. Proc. Royal Soc. A. 469, 20130187 (2013)

    Article  MathSciNet  Google Scholar 

  13. Shivakumara, I.S., Ravisha, M., Chiu-On, N., Varun, V.L.: A thermal non-equilibrium model with Cattaneo effect for convection in a Brinkman porous layer. Int. J. Non-Linear Mech. 71, 39–47 (2015)

    Article  Google Scholar 

  14. Shivakumara, I.S., Ravisha, M., Chiu-On, N., Varun, V.L.: Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid. Acta Mech. 226(11), 3763–3779 (2015)

    Article  MathSciNet  Google Scholar 

  15. Straughan, B.: Exchange of stability in Cattaneo-LTNE porous convection. Int. J. Heat Mass Transf. 89, 792–798 (2015)

    Article  Google Scholar 

  16. Eltayeb, I.A.: Stability of a porous Bénard-Brinkman layer in local thermal non-equilibrium with Cattaneo effect in sold. Int. J. Therm. Sci. 98, 208–218 (2015)

    Article  Google Scholar 

  17. Eltayeb, I.A., Elbashir, I.A.: The stability of second sound waves in a rotating Darcy-Brinkman porous layer in local thermal non-equilibrium. Fluid Dyn. Res. 49, 045512 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ravisha, M., Shivakumara, I.S., Mamatha, A.L.: Cattaneo–LTNE porous ferroconvection. Multidiscip. Model. Mater. Struct. 15(4), 779–799 (2019)

    Article  Google Scholar 

  19. McKibbin, R.: Thermal convection in a porous layer: effects of anisotropy and surface boundary conditions. Transp. Porous Media. 1, 271–292 (1986)

    Article  Google Scholar 

  20. McKibbin, R.: Convection and heat transfer in layered and anisotropic porous media. In: Quintard, M., Todorovic, M. (eds.) Heat and Mass Transfer in Porous Media, pp. 327–336. Elsevier, Amsterdam (1992)

    Google Scholar 

  21. Storesletten, L.: Effects of anisotropy on convective flow through porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, pp. 261–283. Pergamon Press, Oxford (1998)

    Chapter  Google Scholar 

  22. Storesletten, L.: Effects of anisotropy on convection in horizontal and inclined porous layers. In: Ingham, D.B. (ed.) Emerging Technologies and Techniques in Porous Media, pp. 285–306. Kluwer Academic Publishers, Netherlands (2004)

    Chapter  Google Scholar 

  23. Malashetty, M.S., Shivakumara, I.S., Sridhar, K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Med. 60, 199–215 (2005)

    Article  Google Scholar 

  24. Shiina, Y., Hishida, M.: Critical Rayleigh number of natural convection in high porosity anisotropic horizontal porous layers. Int. J. Heat Mass Transf. 53, 1507 (2010)

    Article  Google Scholar 

  25. Shivakumara, I.S., Jinho, L., Mamatha, A.L., Ravisha, M.: Boundary and thermal non-equilibrium effects on convective instability in an anisotropic porous layer. J. Mech. Sci. Technol. 25, 911–921 (2011)

    Article  Google Scholar 

  26. Shivakumara, I.S., Dhananjaya, M.: Penetrative Brinkman convection in an anisotropic porous layer saturated by a nanofluid. Ain Shams Eng. J. 6, 703–713 (2015)

    Article  Google Scholar 

  27. Raghunatha, K.R., Shivakumara, I.S., Sowbhagya, S.: Stability of buoyancy-driven convection in an Oldroyd-B fluid-saturated anisotropic porous layer. Appl. Math. Mech. 39(5), 653–666 (2018)

    Article  MathSciNet  Google Scholar 

  28. Storesletten, L., Rees, D.A.S.: Onset of convection in an inclined anisotropic porous layer with internal heat generation. Fluids 4(2), 75 (2019)

    Article  Google Scholar 

  29. Rees, D.A.S., Storesletten, L.: The onset of convection in a two-layered porous medium with anisotropic permeability. Transp. Porous Med. 128, 345–362 (2019)

    Article  MathSciNet  Google Scholar 

  30. Straughan, B.: Horizontally isotropic bidispersive thermal convection. Proc. Roy. Soc. Lond. A 474, 20180018 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Stewartson, K., Stuart, J.T.: A nonlinear instability theory for a wave in plane parallel flow. J. Fluid Mech. 48, 529–545 (1971)

    Article  MathSciNet  Google Scholar 

  32. Hocking, L.M., Stewartson, K., Stuart, J.T.: A nonlinear instability burst in plane parallel flow. J. Fluid Mech. 51, 705–735 (1972)

    Article  Google Scholar 

  33. Eltayeb, I.A.: Stability of a porous Benard-Brinkman layer in local thermal nonequilibrium with Cattaneo effects in solid. Int. J. Thermal Sci. 98, 208–218 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the reviewers for their useful comments which helped in improving the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Shivakumara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hema, M., Shivakumara, I.S. & Ravisha, M. Cattaneo-LTNE Effects on the Stability of Brinkman Convection in an Anisotropic Porous Layer. Int. J. Appl. Comput. Math 7, 38 (2021). https://doi.org/10.1007/s40819-021-00954-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00954-2

Keywords

Navigation