Skip to main content
Log in

Fractional Order Models for Viscoelasticity in Lung Tissues with Power, Exponential and Mittag–Leffler Memories

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Various models on Viscoelasticity have been used to comprehend mechanics of lung tissues in a better way. In this paper we present efficient mathematical framework using new and modified fractional derivatives to model the viscoelasticity in lung tissues. We demonstrate that replacing the time derivatives by fractionary-order derivatives in the constitutional expression of classical spring-dashpot system instinctively gives rise to power-law relaxation function and continuous-period impedance. Application of fractionary-order time derivative involving non-local as well as non-singular kernel is presented. Results obtained in this paper can be closely compared to the results obtained by Craiem et al. (Phys Med Biol 53:4543–4554, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Craiem, D., Rojo, F.J., Atienza, J.M., Armentano, R.L., Guinea, G.V.: Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53, 4543–4554 (2008)

    Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Babaei, A., Jafari, H., Ahmadi, M.: A fractional order HIV/AIDS model based on the effect of screening of unaware infectives. Math. Methods Appl. Sci. 42(7), 2334–2343 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Ganji, R.M., Jafari, H., Baleanu, D.: A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel. Chaos Solitons Fractals 130, 109405 (2020)

    MathSciNet  Google Scholar 

  5. Ganji, R.M., Jafari, H.: A numerical approach for multi-variable orders differential equations using Jacobi polynomials. Int. J. Appl. Comput. Math. 5, 34 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Hammouch, Z., Mekkaoui, T.: Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system. Complex Intell. Syst. 4(4), 251–260 (2018)

    MATH  Google Scholar 

  7. Valliammal, N., Ravichandran, C., Hammouch, Z., Baskonus, H.M.: A new investigation on fractional-ordered neutral differential systems with state-dependent delay. Int. J. Nonlinear Sci. Numer. Simul. 20(7–8), 803–809 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Sharma, J.B., Sharma, K.K., Purohit, S.D., Atangana, A.: Hybrid watermarking algorithm using finite radon and fractional Fourier transform. Fundam. Inform. 151, 523–543 (2017)

    MathSciNet  Google Scholar 

  9. Kumar, D., Singh, J., Purohit, S.D., Swroop, R.: A hybrid analytical algorithm for non-linear fractional wave-like equations. Math. Model. Nat. Phenom. 14(3), 304 (2019)

    MATH  Google Scholar 

  10. Owolabi, K.M., Hammouch, Z.: Mathematical modeling and analysis of two-variable system with noninteger-order derivative. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013145 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2, 73–85 (2015)

    Google Scholar 

  12. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Google Scholar 

  13. Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., Bates, J.H.T.: The role of fractional calculus in modelling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)

    MathSciNet  Google Scholar 

  14. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1969)

    Google Scholar 

  15. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)

    Google Scholar 

  16. Armentano, R.L., Barra, J.G., Santana, D.B., Pessana, F.M., Graf, S., Craiem, D., Brandani, L.M., Baglivo, H.P., Sanchez, R.A.: Smart damping modulation of carotid wall energetics in human hypertension: effects of angiotensin-converting enzyme inhibition. Hypertension 47, 384–390 (2006)

    Google Scholar 

  17. Bayliss, L.E., Robertson, G.W.: The visco-elastic properties of the lungs. Exp. Physiol. 29(1), 27–47 (1939)

    Google Scholar 

  18. Mount, L.E.: The ventilation flow-resistance and compliance of rat lungs. J. Physiol. Lond. 127, 157–167 (1955)

    Google Scholar 

  19. Hildebrandt, J.: Dynamic properties of air-filled excised cat lung determined by liquid plethysmograph. J. Appl. Physiol. 27, 246–250 (1969)

    Google Scholar 

  20. Hildebrandt, J.: Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28, 365–372 (1970)

    Google Scholar 

  21. Hantos, Z., Suki, B., Csendes, T., Daróczy, B.: Constant-phase modelling of pulmonary tissue impedance. Bull. Eur. Physiopathol. Respir. 23(Suppl. 12), 326s (1987)

    Google Scholar 

  22. Fredberg, J.J., Hoenig, A.E.: Mechanical response of the lung at high frequency. J. Biomech. Eng. 100, 57–66 (1978)

    Google Scholar 

  23. Bates, J.H.T., Suki, B.: An ensemble theory for the mechanical properties of lung tissue. FASEB J. 7, A8 (1993)

    Google Scholar 

  24. Hantos, Z., Adamicza, A., Govaerts, E., Daróczy, B.: Mechanical impedances of lungs and chest wall in the cat. J. Appl. Physiol. 73, 427–433 (1992)

    Google Scholar 

  25. Hantos, Z., Daróczy, B., Csendes, T., Suki, B., Nagy, S.: Modeling of low-frequency pulmonary impedance in the dog. J. Appl. Physiol. 68, 849–860 (1990)

    Google Scholar 

  26. Lutchen, K.R., Jackson, A.C.: Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs. J. Appl. Physiol. 68, 2128–2138 (1990)

    Google Scholar 

  27. Craiem, D., Rojo, F.J., Atienza, J.M., Guinea, G.V., Armentano, R.L.: Fractional calculus applied to model arterial viscoelasticity. Biorheology 44, 251–263 (2007)

    Google Scholar 

  28. Assadi, I., Charef, A., Capot, D., Keyser, R.D., Bensouici, T., Ionescu, C.: Evaluation of respiratory properties by means of fractional order models. Biomed. Signal Process. Control 34, 206–213 (2017)

    Google Scholar 

  29. Ionescu, C., Kelly, J.F.: Fractional calculus for respiratory mechanics: power law impedance, viscoelasticity, and tissue heterogeneity. Chaos Solitons Fractals 102, 433–440 (2017)

    MathSciNet  Google Scholar 

  30. Suki, B., Barabási, A.L., Lutchen, K.R.: Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J. Appl. Physiol. 82(4), 1349–1359 (1997)

    Google Scholar 

  31. Bansal, M.K., Harjule, P., Choi, J., Mubeen, S., Kumar, D.: Ceratain formulas involving a multi-index Mittag–Leffler function. East Asian Math. J. 35(1), 23–30 (2019)

    MATH  Google Scholar 

  32. Bansal, M.K., Kumar, D., Jain, R.: Interrelationships between Marichev–Saigo–Maeda fractional integral operators, the Laplace transform and the \({\bar{H}}\)-function. Int. J. Appl. Comput. Math. 5(4), 103 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Bansal, M.K., Kumar, D., Jain, R.: A study of Marichev-Saigo-Maeda fractional integral operators associated with S-generalized Gauss hypergeometric function. Kyungpook Math. J. 59(3), 433–443 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Bansal, M.K., Choi, J.: A note on pathway fractional integral formulas associated with the incomplete \(H\)-functions. Int. J. Appl. Comput. Math. 5(5), 133 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New trends in nanotechnology and fractional calculus applications. Netherlands (2010)

  36. Harjule, P., Jain, R.: A study of fractional differential equation with an integral operator containing Fox’s H-function in the kernel. Int. Bull. Math. Res. 2, 1–8 (2015)

    MATH  Google Scholar 

  37. Nigmatullin, R., Ionescu, C., Osokin, S., Baleanu, D., Toboev, V.: Non-invasive methods applied for complex signals. Rom. Rep. Phys. 64, 1032–1045 (2012)

    Google Scholar 

  38. Nigmatullin, R., Ionescu, C., Baleanu, D.: Novel technique for respiratory data treatment. Signal Image Video Process. 8, 1517–1532 (2014)

    Google Scholar 

  39. Machado, J., Kiryakova, V., Mainardi, V.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 4756–4767 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Bagley, R.L., Torvik, P.J.: A theoretical basis for application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    MATH  Google Scholar 

  41. Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    MathSciNet  MATH  Google Scholar 

  42. Rogers, L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27, 351–372 (1983)

    MATH  Google Scholar 

  43. Bergel, D.H.: The dynamic elastic properties of arterial wall. J. Physiol. 156, 458–469 (1961)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thankful to all the anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar Bansal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harjule, P., Bansal, M.K. Fractional Order Models for Viscoelasticity in Lung Tissues with Power, Exponential and Mittag–Leffler Memories. Int. J. Appl. Comput. Math 6, 119 (2020). https://doi.org/10.1007/s40819-020-00872-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00872-9

Keywords

Navigation