Skip to main content
Log in

Heat and mass diffusions for Casson nanofluid flow over a stretching surface with variable viscosity and convective boundary conditions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The principle concern of the present analysis is the inclined magnetohydrodynamic Casson nanofluid flow at a nonlinear stretching plate, considering variable viscosity with slip and convective boundary conditions. Mathematical formulation is developed by assuming boundary layer approach. The leading differential equations modeled by considering similarity transformations and improved numerical BVP4C (MATLAB package) are utilized to calculate the solution. Parametric behavior of several physical constraints, for instance, Casson fluid factor β, Prandtl number Pr, magnetic field factor M, Brownian motion factor NB,nonlinear constraint n, variable viscosity constant θr, inclined parameter γ, Lewis number Le, thermophoresis diffusion factor NT, velocity slip constant k and Biot number δ on velocity, concentration and temperature distributions, is deliberated. Expressions of friction factor, rate of heat and mass transfer are evaluated graphically also in tabular form for different values of parameters. Conclusions are made on the basis of entire investigation, and it is comprehended that fluid velocity is reducing function of all parameters, temperature profile falls down against Prandtl number Pr, while Brownian motion parameter NB, thermophoresis number NT and Biot number δ enhance the temperature of fluid. Concentration profile reduces against Brownian motion parameter NB and Lewis number Le, while it enhances for thermophoresis number NT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction and injection. Can J Chem Eng 55:744–746

    Article  Google Scholar 

  2. Vajravelu K (2001) Viscous flow over a nonlinearly stretching sheet. Appl Math Comput 124:281–288

    MathSciNet  MATH  Google Scholar 

  3. Partha MK, Murthy PVSN, Rajasekhar GP (2005) Effects of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat Mass Transf 41:360–366

    Article  Google Scholar 

  4. Tiwari RK, Das MK (2007) Heat transfer augmentation in two-sided lid-driven differentially heated square cavity utilizing Nano fluids. Int J Heat Mass Transf 50:2002–2018

    Article  Google Scholar 

  5. Sharma R (2012) Effect of viscous dissipation and heat source on unsteady boundary layer flow and heat transfer past a stretching surface embedded in a porous medium using element free Galerkin method. Appl Math Comput 219:976–987

    MathSciNet  MATH  Google Scholar 

  6. Shahzad A, Ali R, Khan M (2012) On the exact solution for axisymmetric flow and heat transfer over a nonlinear radially stretching sheet. Chin Phys Lett. https://doi.org/10.1088/0256-307X/29/8/084705

    Article  Google Scholar 

  7. Pourmehra O, Gorji MR, Ganji DD (2016) Heat transfer and flow analysis of nanofluid flow induced by stretching sheet in the presence of an external magnetic field. J Taiwan Chem Eng 65:162–171

    Article  Google Scholar 

  8. Malik MY, Khan M, Salahuddin T, Khan I (2016) Variable viscosity and MHD flow in Casson fluid with Cattaneo–Christov heat flux model: using Keller box method. Eng Sci Technol Int J 19:1985–1992

    Article  Google Scholar 

  9. Khan M, Malik MY, Salahuddin T, Khan I (2016) Heat transfer squeezed flow of Carreau fluid over a sensor surface with variable thermal conductivity: a numerical study. Results Phys 6:940–945

    Article  Google Scholar 

  10. Ibrahim SM, Lorenzini G, Vijaya Kumar P, Raju CSK (2017) Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int J Heat Mass Transf 111:346–355

    Article  Google Scholar 

  11. Bilal S, Rehman KU, Malik MY, Hussain A, Khan M (2017) Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface. Results Phys 7:204–212

    Article  Google Scholar 

  12. Pal D, Mandal G (2017) Double diffusive magnetohydrodynamic heat and mass transfer of nanofluids over a nonlinear stretching/shrinking sheet with viscous-Ohmic dissipation and thermal radiation. Propuls Power Res 6:58–69

    Article  Google Scholar 

  13. Pourmehran O, Rahimi-Gorji M, Ganji DD (2016) Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field. Journal of the Taiwan Institute of Chemical Engineers 65:162–171

    Article  Google Scholar 

  14. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of 1995 ASME international mechanical engineering congress exposition SanFrancisco, USA, ASME, FED231/MD66 99–105

  15. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  16. Raju CSK, Sandeep N, Sugunamma V, Babu MJ, Reddy JVR (2016) Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng Sci Technol Int J 19:45–52

    Article  Google Scholar 

  17. Rehman AU, Mehmood R, Nadeem S (2017) Entropy analysis of radioactive rotating nanofluid with thermal slip. Appl Therm Eng 112:832–840

    Article  Google Scholar 

  18. Tabassum R, Mehmood R, Nadeem S (2017) Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid. J Colloid Interface Sci 501:304–331

    Article  Google Scholar 

  19. Khan I, Malik MY, Salahuddin T, Khan M, Rehman KU (2017) Homogenous–heterogeneous reactions in MHD flow of Powell-Eyring fluid over a stretching sheet with Newtonian heating. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2943-6

    Article  Google Scholar 

  20. Salahuddin T, Malik MY, Hussain A, Awais M, Khan I, Khan M (2017) Analysis of tangent hyperbolic nanofluid impinging on a stretching cylinder near the stagnation point. Results Phys 7:426–434

    Article  Google Scholar 

  21. Khan M, Malik MY, Salahuddin T, Rehman KU, Naseer M, Khan I (2017) MHD flow of Williamson nanofluid over a cone and plate with chemically reactive species. J Mol Liq 231:580–588

    Article  Google Scholar 

  22. Biglarian M, Gorji MR, Pourmehran O, Domairry G (2017) H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer. Int J Hydrog Energy 42(34):22005–22014

    Article  Google Scholar 

  23. Tabassum R, Mehmood R, Pourmehran O, Akbar NS, Gorji-Bandpy M (2017) Impact of viscosity variation on oblique flow of Cu–H2O nanofluid. J Process Mech Eng, Proc Inst Mech Eng Part E. https://doi.org/10.1177/0954408917732759

    Book  Google Scholar 

  24. Pourmehran O, Sarafraz MM, Rahimi-Gorji M, Ganji DD (2018) Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2018.04.004

    Article  Google Scholar 

  25. Pourmehran O, Gorji MR, Bandpy MG, Ganji DD (2015) Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM. Alex Eng J 54(1):17–26

    Article  Google Scholar 

  26. Nadeem S, Haq RL, Akbar NS, Khan ZH (2013) MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alex Eng J 52:577–582

    Article  Google Scholar 

  27. Nadeem S, Mehmood R, Akbar NS (2014) Optimized analytical solution for oblique flow of a Casson nanofluid with convective boundary conditions. Int J Therm Sci 78:90–100

    Article  Google Scholar 

  28. Malik MY, Naseer M, Nadeem S, Rehman A (2014) The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder. Appl Nanosci 4:869–873

    Article  Google Scholar 

  29. Kirubhashankar CK, Ganesh S, Ismail AM (2015) Casson fluid flow and heat transfer over an unsteady porous stretching surface. Appl Math Sci 9:345–351

    Article  Google Scholar 

  30. Mukhopadhyay S (2013) Casson fluid flow and heat transfer over a nonlinearly stretching surface. Chin Phys B 22:744–746

    Google Scholar 

  31. Hussain A, Malik MY, Awais M, Salahuddin T, Bilal S (2017) Computational and physical aspects of MHD Prandtl-Eyring fluid flow analysis over a stretching sheet. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3017-5

    Article  Google Scholar 

  32. Khan M, Hussain A, Malik MY, Salahuddin T, Khan F (2017) Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: a numerical investigation. Results Phys 7:2837–2844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mair Khan.

Ethics declarations

Conflict of interest

The corresponding author on behalf of all authors declares “no conflict of interest” with anyone.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Shahid, A., Salahuddin, T. et al. Heat and mass diffusions for Casson nanofluid flow over a stretching surface with variable viscosity and convective boundary conditions. J Braz. Soc. Mech. Sci. Eng. 40, 533 (2018). https://doi.org/10.1007/s40430-018-1415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1415-y

Keywords

Navigation