Skip to main content
Log in

Spatiotemporal Dynamics of Fractional Predator–Prey System with Stage Structure for the Predator

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, pseudo-spectral method have been proposed as an efficient and easy to adapt method for solving the space fractional reaction–diffusion system. We have studied a fractional predator–prey system where the predator has a life history that takes through the immature and mature stages. Sufficient feasible conditions are obtained for the global asymptotic of the equilibrium state of the system. The main advantage of this approach is that it gives a full diagonal representation of the fractional operator, being able to achieve spectral convergence regardless of the fractional power in the problem. Additional advantage is that the application of the proposed method to two and three spatial dimensions requires a straightforward extension to the one dimensional case. Numerical simulation results of the space fractional reaction–diffusion system, especially in two and three dimensions provide some amazing dynamics when compared to the classical reaction-diffusion equation, and as such consider as a powerful modelling approach for understanding the various aspects of heterogeneity in excitable media. Numerical experiments justify that the results obtained by the proposed method agree well with the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aiello, W.G., Freedman, H.I.: A time delay model of single species growth with stage structure. Math. Biosci. 101, 139–156 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  3. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algoritm. 73, 91–113 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction–diffusion equations. BIT Numer. Math. 54, 937–954 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cui, J., Takeuchi, Y.: A predator–prey system with a stage structure for the prey. Math. Comput. Model. 44, 1126–1132 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Esmaeili, S., Shamsi, M.: A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 3646–3654 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hanert, E.A.: A comparison of three Eulerian numerical methods for fractional-order transport models. Environ. Fluid Mech. 10, 7–20 (2010)

    Article  Google Scholar 

  11. Hou, T.Y., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379–397 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huang, Y., Zheng, M.: Pseudo-spectral method for space fractional diffusion equation. Appl. Math. 4, 1495–1502 (2013)

    Article  Google Scholar 

  13. Kassam, A.K., Trefethen, L.N.: Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Khalil, H., Khan, R.A.: A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation. Comput. Math. Appl. 67, 1938–1953 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Khalil, H., Rashidi, M.M., Khan, R.A.: Application of fractional order Legendre polynomials: a new procedure for solution of linear and nonlinear fractional differential equations under \(m-\)point nonlocal boundary conditions. Commun. Numer. Anal. 2016(2), 144–166 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, 383–406 (2012)

    MATH  MathSciNet  Google Scholar 

  17. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Magnusson, K.G.: Destabilizing effect of cannibalism on a structured predator–prey system. Math. Biosci. 155, 61–75 (1999)

    Article  MATH  Google Scholar 

  19. Owolabi, K.M., Patidar, K.C.: Higher-order time-stepping methods for time-dependent reaction–diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)

    MATH  MathSciNet  Google Scholar 

  20. Owolabi, K.M.: Mathematical analysis and numerical simulation of patterns in fractional and classical reaction–diffusion systems. Chaos Solitons Fractals 93, 89–98 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  21. Owolabi, K.M., Atangana, A.: Numerical solution of nonlinear system in Subdiffusive, diffusive and superdiffusive scenarios. J. Comput. Nonlinear Dyn. (2016). doi:10.1115/1.4035195

    Google Scholar 

  22. Owolabi, K.M., Atangana, A.: Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative. Eur. Phys. J Plus 131, 335 (2016). doi:10.1140/epjp/i2016-16335-8

    Article  Google Scholar 

  23. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)

    Article  MathSciNet  Google Scholar 

  24. Pindza, E., Owolabi, K.M.: Fourier spectral method for higher order space fractional reaction–diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 40, 112–128 (2016)

    Article  MathSciNet  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  26. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2007)

    MATH  Google Scholar 

  27. Shen, J., Tang, T., Wang, L.L.: Spectral Methods. Algorithms, Analysis and Applications. Springer-Verlag, Heidelberg (2011)

    MATH  Google Scholar 

  28. Wang, W.: Global dynamics of a population model with stage structure for predator. In: Chen, L., et al. (eds.) Proceedings of the international conference on mathematical biology advanced topics in biomathematics, pp. 253–257. World Scientific Publishing Co., Pte. Ltd. (1997)

  29. Wang, W., Chen, L.: A predator–prey system with stage-structure for predator. Comput. Math. Appl. 33, 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  30. Wang, W., Mulone, G., Salemi, F., Salone, V.: Permanence and stability of a stage structured predator–prey model. J. Math. Anal. Appl. 262, 499–528 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xiao, Y., Chen, L.: Global stability of a predator–prey system with stage structure for the predator. Acta Math. Sin. Engl. Ser. 20, 63–70 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yang, W., Li, X., Bai, Z.: Permanence of periodic Holling type-IV predator–prey system with stage structure for prey. Math. Comput. Model. 48, 677–684 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36, A40–A62 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to both the academic editor and anonymous referees for their suggestions and useful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K.M., Atangana, A. Spatiotemporal Dynamics of Fractional Predator–Prey System with Stage Structure for the Predator. Int. J. Appl. Comput. Math 3 (Suppl 1), 903–924 (2017). https://doi.org/10.1007/s40819-017-0389-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0389-2

Keywords

Mathematics Subject Classification

Navigation