Skip to main content
Log in

A comparison of three Eulerian numerical methods for fractional-order transport models

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Tracer transport in complex systems like turbulent flows or heterogeneous porous media is now more and more regarded as a non-local process that can hardly be represented by second-order diffusion models. In this work, we consider diffusion models that assume that tracer particles follow a heavy-tail Lévy distribution, which allows for large displacements. We show that such an assumption leads to a fractional-order diffusion operator in the governing equation for tracer concentration. A comparison of three Eulerian numerical methods to discretize that equation is then performed. These consist of the finite difference, finite element and spectral element methods. We suggest that non-local methods, like the spectral element method, are better suited to transport models with fractional-order diffusion operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor GK (1950) The application of the similarity theory of turbulence to atmospheric diffusion. Quart J R Meteorol Soc 76: 133–146

    Article  Google Scholar 

  2. Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection-dispersion equation. Water Resour Res 36: 1403–1412

    Article  Google Scholar 

  3. Benson DA, Wheatcraft SW, Meerschaert MM (2000) The fractional-order governing equation of levy motion. Water Resour Res 36: 1413–1423

    Article  Google Scholar 

  4. Berkowicz R, Prahm L (1979) Generalization of K theory for turbulent diffusion. Part 1: spectral diffusivity concept. J Appl Meteorol 18: 266–272

    Article  Google Scholar 

  5. Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modelling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44(RG2003): 3

    Google Scholar 

  6. Boyd JP (2001) Chebyshev and Fourier spectral methods, 2nd edn. Dover Publications, New York

    Google Scholar 

  7. Chaves AS (1998) A fractional diffusion equation to describe Lévy flights. Phys Lett A 239: 13–16

    Article  CAS  Google Scholar 

  8. Cushman-Roisin B (2008) Beyond eddy diffusivity: an alternative model for turbulent dispersion. Environ Fluid Mech 8: 543–549

    Article  Google Scholar 

  9. Cushman-Roisin B, Jenkins AD (2006) On a non-local parameterization for shear turbulence and the uniqueness of its solutions. Boundary-Layer Meteorol 118: 69–82

    Article  Google Scholar 

  10. Davies RE (1983) Oceanic property transport, Lagrangian particle statistics, and their prediction. J Mar Res 41: 163–194

    Article  Google Scholar 

  11. Deng ZQ, Bengtson L, Singh VP (2006) Parameter estimation for fractional dispersion model for rivers. Environ Fluid Mech 6: 451–475

    Article  Google Scholar 

  12. Durbin PA (1980) A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J Fluid Mech 100: 279–302

    Article  Google Scholar 

  13. Einstein A (1905) Uber die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17: 549–560

    Article  CAS  Google Scholar 

  14. Feller W (1971) An introduction to probability theory and its applications, vol II. Wiley, New York

    Google Scholar 

  15. Fix GJ, Roop JP (2004) Least square finite-element solution of a fractional order two-point boundary value problem. Comput Math Appl 48: 1017–1033

    Article  Google Scholar 

  16. Frippiat CC, Holeyman AE (2008) A comparative review of upscaling methods for solute transport in heterogenenous porous media. J Hydrol 362: 150–176

    Article  Google Scholar 

  17. Gnedenko B, Kolmogorov A (1954) Limit distributions for sums of independent random variables. Addison-Wesley, Cambridge, MA

    Google Scholar 

  18. Huang G, Huang Q, Zhan H (2006) Evidence of one-dimensional scale-dependent fractional advection-dispersion. J Contam Hydrol 85: 53–71

    Article  CAS  Google Scholar 

  19. Jenkins AD (1985) Simulation of turbulent dispersion using a simple random model of the flow field. Appl Math Model 9: 239–245

    Article  Google Scholar 

  20. Kim S, Kavvas ML (2006) Generalized Fick’s law and fractional ADE for pollution transport in a river: detailed derivation. J Hydrol Eng 11(1): 80–83

    Article  Google Scholar 

  21. Lévy P (1954) Théorie de l’Addition des Variables Aléatoires. Gauthier-Villars, Paris

    Google Scholar 

  22. Meerschaert MM, Benson DA, Bäumer B (1999) Multidimensional advection and fractional dispersion. Phys Lett A 59: 5026–5028

    CAS  Google Scholar 

  23. Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-diffusion flow equations. J Comput Appl Math 172: 65–77

    Article  Google Scholar 

  24. Okubo A (1971) Oceanic diffusion diagrams. Deep Sea Res 18: 789–802

    Google Scholar 

  25. Pachepsky Y, Timlin D, Rawls W (2003) Generalized Richards’ equation to simulate water transport in unsaturated soils. J Hydrol 272: 3–13

    Article  Google Scholar 

  26. Podlubny I (1999) Fractional differential equations: mathematics in science and engineering, vol 198. Academic Press, New York

    Google Scholar 

  27. Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc R Soc Lond 110: 709–737

    Article  Google Scholar 

  28. Richardson LF, Stommel H (1948) Note on eddy diffusion in the sea. J Meteorol 5: 238–240

    Google Scholar 

  29. Roop JP (2006) Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \({\mathbb{R}^2}\) . J Comput Appl Math 193: 243–268

    Article  Google Scholar 

  30. Schumer R, Benson DA, Meerschaert MM, Wheatcraft JW (2001) Eulerian derivation of the fractional advection-dispersion equation. J Contam Hydrol 48: 69–88

    Article  CAS  Google Scholar 

  31. Stommel H (1949) Horizontal diffusion due to oceanic turbulence. J Mar Res 8: 199–225

    Google Scholar 

  32. Tadjeran C, Meerschaert MM, Scheffler H-P (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213: 205–213

    Article  Google Scholar 

  33. Zhang Y, Benson DA, Reeves DM (2009) Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv Water Resour 32(4): 561–581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Hanert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanert, E. A comparison of three Eulerian numerical methods for fractional-order transport models. Environ Fluid Mech 10, 7–20 (2010). https://doi.org/10.1007/s10652-009-9145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9145-4

Keywords

Navigation