Skip to main content
Log in

Euler Equations on General Planar Domains

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We obtain a general sufficient condition on the geometry of possibly singular planar domains that guarantees global uniqueness for any weak solution to the Euler equations on them whose vorticity is bounded and initially constant near the boundary. While similar existing results require domains that are \(C^{1,1}\) except at finitely many convex corners, our condition involves much less domain smoothness, being only slightly more restrictive than the exclusion of corners with angles greater than \(\pi \). In particular, it is satisfied by all convex domains. The main ingredient in our approach is showing that constancy of the vorticity near the boundary is preserved for all time because Euler particle trajectories on these domains, even for general bounded solutions, cannot reach the boundary in finite time. We then use this to show that no vorticity can be created by the boundary of such possibly singular domains for general bounded solutions. We also show that our condition is essentially sharp in this sense by constructing domains that come arbitrarily close to satisfying it, and on which particle trajectories can reach the boundary in finite time. In addition, when the condition is satisfied, we find sharp bounds on the asymptotic rate of the fastest possible approach of particle trajectories to the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C.: Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40, 769–790 (1972)

    Article  MathSciNet  Google Scholar 

  2. Bardos, C., Di Plinio, F., Temam, R.: The Euler equations in planar nonsmooth convex domains. J. Math. Anal. Appl. 407, 69–89 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bonicatto, P., Gusev, N.A.: Superposition principle for the continuity equation in a bounded domain. J. Phys. 990, 1–12 (2018)

    MathSciNet  Google Scholar 

  4. Boyer, F.: Trace theorems and spatial continuity properties for the solutions of the transport equation. Diff. Integr. Equ. 18, 891–934 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  Google Scholar 

  6. Di Plinio, F., Temam, R.: Grisvard’s shift theorem near \(L^\infty \) and Yudovich theory on polygonal domains. SIAM J. Math. Anal. 47, 159–178 (2015)

    Article  MathSciNet  Google Scholar 

  7. DiPerna, R.J., Majda, A.J.: Concentrations in regularizations for \(2\)-D incompressible flow. Commun. Pure Appl. Math. 40, 301–345 (1987)

    Article  MathSciNet  Google Scholar 

  8. Gérard-Varet, D., Lacave, C.: The two-dimensional Euler equations on singular domains. Arch. Ration. Mech. Anal. 209, 131–170 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gérard-Varet, D., Lacave, C.: The two dimensional Euler equations on singular exterior domains. Arch. Ration. Mech. Anal. 218, 1609–1631 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hölder, E.: Über unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrentzten inkompressiblen Flüssigkeit (German). Math. Z. 37, 727–738 (1933)

    Article  MathSciNet  Google Scholar 

  11. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  Google Scholar 

  12. Kikuchi, K.: Exterior problem for the two-dimensional Euler equation. J. Fac. Sci. Univ. Tokyo IA Math. 30, 3490–3494 (1983)

    MathSciNet  Google Scholar 

  13. Kiselev, A., Zlatoš, A.: Blow up for the 2D Euler equation on some bounded domains. J. Diff. Equ. 259, 3490–3494 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  14. Lacave, C.: Uniqueness for two-dimensional incompressible ideal flow on singular domains. SIAM J. Math. Anal. 47, 1615–1664 (2015)

    Article  MathSciNet  Google Scholar 

  15. Lacave, C., Miot, E.: Uniqueness for the vortex-wave system when the vorticity is constant near the point vortex. SIAM J. Math. Anal. 41, 1138–1163 (2009)

    Article  MathSciNet  Google Scholar 

  16. Lacave, C., Miot, E., Wang, C.: Uniqueness for the two-dimensional Euler equations on domains with corners. Indiana Univ. Math. J. 63, 1725–1756 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lacave, C., Zlatoš, A.: The Euler equations in planar domains with corners. Arch. Ration. Mech. Anal. 234, 57–79 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lesley, F.D.: Conformal mappings of domains satisfying a wedge condition. Proc. Am. Math. Soc. 93, 483–488 (1985)

    Article  MathSciNet  Google Scholar 

  19. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  20. Marchioro, C., Pulvirenti, M.: On the vortex-wave system. In: Francaviglia, M. (ed.) Mechanics, Analysis and Geometry: 200 Years After Lagrange, North-Holland Delta Series, 79–95. Elsevier, Amsterdam (1991)

    Google Scholar 

  21. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences 96. Springer, New York (1994)

    MATH  Google Scholar 

  22. McGrath, F.J.: Nonstationary plane flow of viscous and ideal fluids. Arch. Ration. Mech. Anal. 27, 329–348 (1967)

    Article  MathSciNet  Google Scholar 

  23. Pommerenke, C.: Boundary Behavior of Conformal Maps. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299. Springer, Berlin (1992)

    Book  Google Scholar 

  24. Taylor, M.E.: Incompressible fluid flows on rough domains. In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), vol. 42. Birkhäuser, Basel, pp. 320–334 (2000)

  25. Temam, R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20, 32–43 (1975)

    Article  MathSciNet  Google Scholar 

  26. Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I, preprint.

  27. Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II, preprint.

  28. Warschawski, S.E., Schober, G.E.: On conformal mapping of certain classes of Jordan domains. Arch. Ration. Mech. Anal. 22, 201–209 (1966)

    Article  MathSciNet  Google Scholar 

  29. Wolibner, W.: Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long (French). Mat. Z. 37, 698–726 (1933)

    Article  MathSciNet  Google Scholar 

  30. Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Zh. Vych. Mat. 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Claude Bardos, Camillo De Lellis, Peter Ebenfelt, Christophe Lacave, and Ming Xiao for helpful pointers to literature. ZH acknowledges partial support by NSF Grant DMS-1652284. AZ was supported in part by NSF Grants DMS-1652284 and DMS-1900943.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Zlatoš.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Zlatoš, A. Euler Equations on General Planar Domains. Ann. PDE 7, 20 (2021). https://doi.org/10.1007/s40818-021-00107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-021-00107-0

Keywords

Navigation