Skip to main content
Log in

Emergence of Apparent Horizon in Gravitational Collapse

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We solve Einstein vacuum equations in a spacetime region up to the “center” of gravitational collapse. Within this region, we construct a sequence of marginally outer trapped surfaces (MOTS) with areas going to zero. These MOTS form a marginally outer trapped tube (apparent horizon). It emerges from a point and is smooth (except at that point). In the proof we employ a scale critical trapped surface formation criterion established by An and Luk and a new type of quasilinear elliptic equation is studied. One of the main conclusions in this paper proves a conjecture of Ashtekar on black hole thermodynamics. And the spacetimes constructed here could also be viewed as (non-spherically symmetric) generalizations of the well-known Vaidya spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Christodoulou’s original result allows the initial data to be posed at past null infinity. Here, we only mention a version in a finite region.

  2. Here, and in the remainder of this paper, we normalize the u coordinate on the backwards light cone as follows. Let \(C=\{(t,x_1,x_2,x_3):t\le 0,\,t^2=x_1^2+x_2^2+x_3^2\}\) be the backward light cone in Minkowski space emanating from the origin. Define \(r=\sqrt{x_1^2+x_2^2+x_3^2}\) and \(u=\frac{1}{2}(t-r+2)\). Notice in particular that \(u=0\) (\(t=-1, r=1\)) on a standard sphere of radius 1 and \(u=1\) (\(t=0, r=0\)) on the vertex.

  3. The initial data constructed in [15] satisfy both (1.2) and (1.3) at the same time. Moreover, the initial data can be chosen to obey \(\inf _{\omega \in {\mathbb {S}}^2} \int _0^{\delta } |\hat{\chi }_0|^2(\underline{u}',\omega )\,d\underline{u}'<2.\) Thus for \(\delta \) sufficiently small, it can be proved that the initial hypersurface \(H_1\) does not contain any trapped surfaces.

  4. In the proof of [3] we don’t use the \(\nabla _{e_4}\) derivative of \(\nabla ^i\hat{\chi }\). For rougher initial data we could proceed as in [34] and replace (1.4) with \(\sum _{i\le 5} a^{-\frac{1}{2}}\Vert \nabla ^{i}\hat{\chi }_{0}\Vert _{L^{\infty }_{\underline{u}}L^2(S_{0,\underline{u}})}\le B\).

  5. By definition \(\hat{\chi }\) is essentially \(\partial _{\underline{u}}g\) and it is of size \(a^{\frac{1}{2}}/|u|\). By dimensional analysis \(\partial _{\underline{u}}\) is of size \(\delta ^{-1}\) and \(\partial ^{\frac{1}{2}}_{\underline{u}}\thicksim \delta ^{-\frac{1}{2}}\), we have

    $$\begin{aligned} \int _{H^{(0,\delta )}_{u=0}}|\partial _{\underline{u}} g|^2= & {} \int _0^{\delta }\int _{S_{0,\underline{u}'}}|\partial _{\underline{u}} g(u,\underline{u}')|^2 d\theta ^1 d\theta ^2 d \underline{u}'\approx \delta a^{\frac{1}{2}}a^{\frac{1}{2}}\approx \delta a,\\ \int _{H^{(0,\delta )}_{u=0}}|\partial ^{\frac{3}{2}}_{\underline{u}} g|^2= & {} \int _0^{\delta }\int _{S_{0,\underline{u}'}}|\partial ^{\frac{1}{2}}_{\underline{u}}\partial _{\underline{u}} g(u,\underline{u}')|^2 d\theta ^1 d\theta ^2 d \underline{u}'\approx \delta \delta ^{-\frac{1}{2}}a^{\frac{1}{2}}\delta ^{-\frac{1}{2}}a^{\frac{1}{2}}\approx a. \end{aligned}$$

    Since trivial initial data are prescribed along \(\underline{H}_0\), the characteristic initial data are then of the following sizes:

    $$\begin{aligned} H^{\frac{3}{2}}\, \text{ norm } \sim a^{\frac{1}{2}}, \quad H^1\, \text{ norm } \sim \delta ^{\frac{1}{2}} a^{\frac{1}{2}}, \quad H^{s}\, \text{ norm } \sim \delta ^{\frac{3-2s}{2}} a^{\frac{1}{2}}. \end{aligned}$$
  6. Along a spacelike hypersurface, MOTS locates at the blow-up points for solutions to Jang’s equation. In this paper, along an incoming null hypersurface a new quasilinear elliptic equation for MOTS is solved. Its solutions remain regular.

  7. Here \(\{e_1, e_2, e_3, e_4\}\) and \(\{e'_1, e'_2, e'_3, e'_4\}\) are two sets of null tetrads (moving frames). \(\{e_1, e_2\}\) and \(\{e'_1, e'_2\}\) are tangent to some spacelike 2-spheres. And \(\{e_3, e_4\},\,\,\{e'_3, e'_4\}\) are corresponding null pairs. See details in Sections 23.

  8. For more detailed statement of these two theorems, interested readers are referred to Theorem 3.3 in [4].

  9. Vaidya spacetime describes a spherically symmetric solution to Einstein-dust system, which is either emitting or absorbing null dusts.

  10. For (4.4), since \(\frac{20}{21}\le 1+(f(\omega )-1)\lambda \le \frac{22}{21}\), we rename \(1+(f(\omega )-1)\lambda \) to \(f(\omega )\) with lower and upper bounds \(\frac{20}{21}\) and \(\frac{22}{21}\), respectively.

  11. In Section 3.5, we prove that the solution we construct through the method of continuity satisfies these requirements.

  12. See Theorem 3 of Section 5.8.2 in [19].

  13. Here \(D^1_{\underline{u}}\) and \(D^2_{\underline{u}}\) could change for different \(\underline{u}\).

  14. See [3].

  15. Here \(D^1_{\underline{u}}\) and \(D^2_{\underline{u}}\) could change for different \(\underline{u}\).

  16. That is corresponding to \(20>\sqrt{\theta _1'^2+\theta _2'^2}>\frac{1}{5}\) in the south polar chart.

References

  1. Alexakis, S.: The Penrose inequality on perturbations of the Schwarzschild exterior, preprint (2015), arXiv:1506.06400

  2. An, X.: Formation of trapped surfaces from past null infinity, preprint (2012), arXiv:1207.5271

  3. An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation. Adv. Theor. Math. Phys. 21(1), 1–120 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces, arXiv: 1006.4601, (2010)

  5. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)

    Article  ADS  Google Scholar 

  6. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Comm. Math. Phys. 290(3), 941–972 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ashtekar, A., Galloway, G.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9(1), 1–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. 104030(10), 25 (2003)

    MathSciNet  Google Scholar 

  9. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativity 7, 10 (2004)

    Article  ADS  MATH  Google Scholar 

  10. Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften, vol. 252 (1982)

  11. Christodoulou, D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Comm. Pure Appl. Math. 44(3), 339–373 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christodoulou, D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Comm. Pure Appl. Math. 46(8), 1131–1220 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christodoulou, D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. (2) 140(3), 607–653 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. (2) 149(1), 183–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Christodoulou, D.: The formation of black holes in general relativity. Monographs in Mathematics, European Mathematical Soc (2009)

    Book  MATH  Google Scholar 

  16. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton mathematical series, vol. 41, (1993)

  17. Dafermos, M.: The formation of black holes in general relativity. Astérisque 352, 2 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes, preprint (2013), arXiv:1306.5364

  19. Evans, L.: Partial differential equations. AMS Grad Stud Math 19, 205 (1998)

    ADS  Google Scholar 

  20. Eichmair, M.: The plateau problem for marginally trapped surfaces. J. Diff. Geom. 83(3), 551–584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eichmair, M.: Existence, regularity, and properties of generalized apparent horizons. Comm. Math. Phys. 294(3), 745–760 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Galloway, G., Schoen, R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Comm. Math. Phys. 266, 571–576 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, vol. 224. Springer, Berlin (1983)

    MATH  Google Scholar 

  24. Holzegel, G.: Ultimately Schwarzschildean spacetimes and the black hole stability problem, preprint (2010), arXiv:1010.3216

  25. Klainerman, S., Nicolo, F.: The evolution problem in general relativity. Progress in mathematical physics. Birkhaüser, Basel (2003)

    Book  MATH  Google Scholar 

  26. Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Invent. Math. 198, 1 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Klainerman, S., Rodnianski, I.: On emerging scarred surfaces for the Einstein vacuum equations. Discrete Contin. Dyn. Syst. 28(3), 1007–1031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klainerman, S., Rodnianski, I.: On the the formation of trapped surfaces. Acta Math. 208(2), 211–333 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Le, P.: The intersection of a hyperplane with a lightcone in the Minkowski spcetime, arXiv: 1601.01567, preprint (2016)

  30. Li, J., Yu, P.: Construction of Cauchy data of vacuum Einstein field equations evolving to black holes. Ann. Math. 181, 169 (2014)

    MathSciNet  Google Scholar 

  31. Liang, C., Zhou, B.: Introductory differential geometry and general relativity I, II, III. Science Press China, Beijing (2000)

    Google Scholar 

  32. Luk, J.: On the local existence for the characteristic initial value problem in general relativity. Int. Mat. Res. Notices 20, 4625–4678 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Luk, J.: Weak null singularities in general relativity, preprint (2013), arXiv:1311.4970

  34. Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves, preprint (2012), arXiv:1209.1130

  35. Luk, J., Rodnianski, I.: Nonlinear interactions of impulsive gravitational waves for the vacuum Einstein equations, preprint (2013), arXiv:1301.1072

  36. Metzger, J.: Blowup of Jang’s equation at outermost marginally trapped surfaces. Comm. Math. Phys. 294, 61–72 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics series 171, (2006)

  39. Reiterer, M., Trubowitz, E.: Strongly focused gravitational waves Comm. Math. Phys. 307(2), 275–313 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Schoen, R.: Talk given at the Miami Waves conference, (2004)

  41. Schoen, R., Yau, S.T.: The existence of a black hole due to condensation of matter. Commun. Math. Phys. 90(4), 575–579 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Williams, C.: Asymptotic behavior of spherically symmetric marginally trapped tubes. Ann. Henri Poincaré 9(6), 1029–1067 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Yau, S.T.: Geometry of three manifolds and existence of black hole due to boundary effect. Adv. Theor. Math. Phys. 5(4), 755–767 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu, P.: Energy estimates and gravitational collapse. Comm. Math. Phys. 317(2), 273–316 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Yu, P.: Dynamical Formation of black holes due to the condensation of matter field, preprint (2011), arXiv:1105.5898

Download references

Acknowledgements

We are grateful for enlightening discussions with Jonathan Luk and for his helpful suggestions on an earlier version of the manuscript. We thank Po-Ning Chen, Demetrios Christodoulou, Zheng-Chao Han, Sergiu Klainerman, Yakov Shlapentokh-Rothman, Shadi Tahvildar-Zadeh and Willie Wong for valuable conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang An.

Additional information

Yuqing An—Dedicated to my father.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Ricci Curvature of M

On each MOTS: \((1-R(\underline{u},\omega ), \underline{u}, \omega )\), here we derive a lower bound for \({\text{ Ric}_{M}}(\nabla R, \nabla R)\).

For the 2-dimensional manifold M, we have

$$\begin{aligned} R_{ij}=K'g_{ij}, \end{aligned}$$

where \(K'\) is the Gaussian curvature of M respect to frames \(e_a', e_b', e_3', e_4'\). Gauss equation gives

$$\begin{aligned} K'=-\rho '+\frac{1}{2} \hat{\chi }'\cdot \hat{\underline{\chi }}'-\frac{1}{4} \text{ tr }\chi ' \text{ tr }\underline{\chi }'. \end{aligned}$$

Let \(F_a:=\Omega (\nabla _a R)\) and \(F=F^c e_c\). Recall that

$$\begin{aligned} e'_b=e_b-F_b e_3, \quad e'_3=e_3, \quad e'_4=e_4-2F+|F|^2 e_3. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \underline{\chi }'(e_a', e_b')= & {} g(D_{e_a'}e_3, e_b')=g(D_{e_a-F_a e_3}e_3, e'_b)\\= & {} g(D_{e_a}e_3, e'_b)-F_a g(D_{e_3}e_3, e'_b)\\= & {} g(D_{e_a}e_3, e_b-F_b e_3)=g(D_{e_a}e_3, e_b)-F_b g(D_{e_a}e_3, e_3)\\= & {} \underline{\chi }(e_a, e_b). \end{aligned}$$

It follows

$$\begin{aligned} \text{ tr }\underline{\chi }'=\text{ tr }\underline{\chi }, \quad \quad \hat{\underline{\chi }}'=\hat{\underline{\chi }}. \end{aligned}$$

In the same fashion, we have

$$\begin{aligned} \chi '= & {} \chi _{ab}-(\nabla _a F_b+\nabla _b F_a)+\nabla _3(F_a F_b)-(\zeta _b+\eta _b)F_a-(\zeta _a+\eta _a)F_b\\&+|F|^2\underline{\chi }_{ab}-F_b F^c\underline{\chi }_{ac}-F_a F^c \underline{\chi }_{bc}-4\underline{\omega }F_a F_b. \end{aligned}$$

Since

$$\begin{aligned} \nabla _3 F_a=\nabla _3 (\Omega \nabla R)=-\Omega \underline{\chi }\cdot \nabla R-2\underline{\omega }\Omega \nabla R, \end{aligned}$$

contracting with metric, we then arrive at

$$\begin{aligned} \text{ tr }\chi '=\text{ tr }\chi -2\Omega \Delta R-4\Omega \eta \cdot \nabla R-4\Omega ^2\hat{\underline{\chi }}_{bc}\nabla ^b R\nabla ^c R-\Omega ^2\text{ tr }\underline{\chi }|\nabla R|^2-8\Omega ^2\underline{\omega }|\nabla R|^2. \end{aligned}$$

Furthermore notice that on M, we have \(\text{ tr }\chi '=0\). Hence,

$$\begin{aligned} \hat{\chi }'_{ab}= & {} \chi '_{ab}-\frac{1}{2}\text{ tr }\chi ' g_{ab}=\chi '\\= & {} \chi _{ab}-(\nabla _a F_b+\nabla _b F_a)+\nabla _3(F_a F_b)-(\zeta _b+\eta _b)F_a-(\zeta _a+\eta _a)F_b\\&+|F|^2\underline{\chi }_{ab}-F_b F^c\underline{\chi }_{ac}-F_a F^c \underline{\chi }_{bc}-4\underline{\omega }F_a F_b\\= & {} \chi _{ab}-\nabla _a \Omega \nabla _b R-\Omega \nabla _a \nabla _b R-\nabla _b \Omega \nabla _a R-\Omega \nabla _b\nabla _a R\\&-\Omega ^2 \underline{\chi }_{ac}\nabla ^c R \nabla _b R-2\underline{\omega }\Omega ^2 \nabla _a R \nabla _b R-\Omega ^2 \underline{\chi }_{bc} \nabla ^c R \nabla _a R-2\underline{\omega }\Omega ^2 \nabla _b R \nabla _a R\\&-\Omega (\zeta _b+\eta _b)\nabla _a R-\Omega (\zeta _a+\eta _a)\nabla _b R+\Omega ^2\underline{\chi }_{ab}|\nabla R|^2\\&-\Omega ^2\underline{\chi }_{ac}\nabla _b R \nabla ^c R-\Omega ^2\underline{\chi }_{bc} \nabla _a R \nabla ^c R-4\Omega ^2\underline{\omega }\nabla _a R \nabla _b R. \end{aligned}$$

For \(\rho '\), we have

$$\begin{aligned} \rho '= & {} {}\frac{1}{4} R(e'_4, e'_3, e'_4, e'_3)\\= & {} {}\frac{1}{4} R(e_4-2F^c e_c+|F|^2e_3, e_3, e_4-2F^b e_b+|F|^2e_3, e_3)\\= & {} \rho +2\Omega \underline{\beta }_b \nabla ^b R+\Omega ^2 \underline{\alpha }_{bc}\nabla ^c R \nabla ^b R. \end{aligned}$$

Therefore, on M we conclude

$$\begin{aligned} K'=&-\rho -2\Omega \underline{\beta }_b \nabla ^b R-\Omega ^2 \underline{\alpha }_{bc}\nabla ^c R \nabla ^b R\\&+\frac{1}{2}\hat{\underline{\chi }}^{ab}\chi _{ab}-\hat{\underline{\chi }}^{ab}\nabla _a \Omega \nabla _b R-\Omega \hat{\underline{\chi }}^{ab}\nabla _a\nabla _b R-\frac{1}{2} \Omega ^2 \hat{\underline{\chi }}^{ab}\underline{\chi }_{ac}\nabla ^c R \nabla _b R\\&-\Omega ^2\underline{\omega }\underline{\chi }^{ab}\nabla _a R \nabla _b R-\frac{1}{2} \Omega ^2\hat{\underline{\chi }}^{ab}\underline{\chi }_{bc}\nabla ^c R\nabla _a R-\Omega ^2\underline{\omega }\hat{\chi }^{ab}\nabla _a R \nabla _b R\\&-\frac{1}{2}\Omega \hat{\underline{\chi }}^{ab} (\zeta _b+\eta _b)\nabla _a R-\frac{1}{2}\Omega \hat{\underline{\chi }}^{ab} (\zeta _a+\eta _a)\nabla _b R+\frac{1}{2}\Omega ^2|\nabla R|^2 \hat{\underline{\chi }}^{ab}\underline{\chi }_{ab}\\&-\frac{1}{2}\Omega ^2\hat{\underline{\chi }}^{ab}\underline{\chi }_{ac}\nabla _b R \nabla ^c R-\frac{1}{2}\Omega ^2 \hat{\underline{\chi }}^{ab}\underline{\chi }_{bc}\nabla _a R\nabla ^c R-2\Omega ^2\underline{\omega }\hat{\underline{\chi }}^{ab}\nabla _a R \nabla _b R. \end{aligned}$$

Here

$$\begin{aligned} -\rho +\frac{1}{2}\hat{\underline{\chi }}^{ab}\chi _{ab}=-\rho +\frac{1}{2}\hat{\underline{\chi }}^{ab}\hat{\chi }_{ab}=-\check{\rho }=\frac{\underline{u}a}{2R^3}f(\omega )\cdot [1+o(1)]>0, \end{aligned}$$

and

$$\begin{aligned} 2| K'+\rho -\frac{1}{2}\hat{\underline{\chi }}^{ab}\chi _{ab} |\le \frac{\underline{u}a^{\frac{1}{2}}}{R}\cdot \frac{|\nabla R|^2}{R^2}+\frac{\underline{u}a^{\frac{1}{2}}}{R^2} \cdot |\nabla ^2 R|+\frac{\underline{u}a}{R^3}\cdot \frac{\underline{u}a^{\frac{1}{2}}}{R}\cdot |\nabla R|. \end{aligned}$$

Hence

$$\begin{aligned} 2K'= & {} 2\bigg ( K'+\rho -\frac{1}{2}\hat{\underline{\chi }}^{ab}\chi _{ab}\bigg )+2\bigg ( -\rho +\frac{1}{2}\hat{\underline{\chi }}^{ab}\chi _{ab}\bigg )\\\ge & {} -2|K'+\rho -\frac{1}{2}\hat{\underline{\chi }}^{ab}\chi _{ab}|+2\bigg ( -\rho +\frac{1}{2}\hat{\underline{\chi }}^{ab}\chi _{ab}\bigg )\\\ge & {} -\frac{\underline{u}a^{\frac{1}{2}}}{R}\cdot \frac{|\nabla R|^2}{R^2}-\frac{\underline{u}a^{\frac{1}{2}}}{R^2} \cdot |\nabla ^2 R|-\frac{\underline{u}a}{R^3}\cdot \frac{\underline{u}a^{\frac{1}{2}}}{R}\cdot |\nabla R|. \end{aligned}$$

Therefore, we conclude

$$\begin{aligned} 2{\text{ Ric}_{M}}(\nabla R, \nabla R)= & {} 2K'|\nabla R|^2\nonumber \\\ge & {} -\frac{\underline{u}a^{\frac{1}{2}}}{R}\cdot \frac{|\nabla R|^4}{R^2}-\frac{\underline{u}a^{\frac{1}{2}}}{R^2} \cdot |\nabla ^2 R|\cdot |\nabla R|^2 \nonumber \\&-\frac{\underline{u}a}{R^3}\cdot \frac{\underline{u}a^{\frac{1}{2}}}{R}\cdot |\nabla R|^3. \end{aligned}$$
(A.1)

Appendix B. Construction of Initial Data Along \(H_0^{[0,\delta ]}\)

Goal of This Section. By four steps, we will construct initial data along \(H_0^{[0,\delta ]}\) such that for any \(\underline{u}\in (0,\delta ]\) we have

$$\begin{aligned} \int _0^{\underline{u}}|\hat{\chi }|^2(0,\underline{u}', \omega )d\underline{u}'=f(\underline{u}, \omega )\underline{u}a, \quad \quad \text{ with } \quad \quad \frac{20}{21}\le f(\underline{u}, \omega )\le \frac{22}{21}. \end{aligned}$$
(B.1)

Remark 13

In the below, we will focus on achieving (B.1). But with a similar argument, for any large positive constant c, we could also find initial data such that

$$\begin{aligned} \int _0^{\underline{u}}|\hat{\chi }|^2(0,\underline{u}', \omega )d\underline{u}'=f(\underline{u}, \omega )\underline{u}a, \quad \quad \text{ with } \quad \quad 1-\frac{1}{c}\le f(\underline{u}, \omega )\le 1+\frac{1}{c}\qquad \end{aligned}$$
(B.2)

by rescaling initial data satisfying

$$\begin{aligned} \int _0^{\delta }|\hat{\chi }|^2(0,\underline{u}', \omega )d\underline{u}'=f(\delta ,\omega ) \delta a,\quad \quad \text{ with } \quad \quad 1-\frac{1}{c}\le f(\delta , \omega )\le 1+\frac{1}{c}. \end{aligned}$$

We use (B.2) in Section 10.1.

Remark 14

A first trying to achieve (B.1) is to require

$$\begin{aligned} \frac{20}{21}\cdot a \le |\hat{\chi }|^2(0, \underline{u}', \omega )\le \frac{22}{21}\cdot a \end{aligned}$$
(B.3)

for any \(\omega \in {\mathbb {S}}^2\), where \(0\le \underline{u}' \le \delta \). If we have (B.3), then (B.1) follows. However, by a topological argument, on any fixed \(S_{u,\underline{u}}\), traceless two tensor \(\hat{\chi }_{ab}\) must vanish on at least one point. This first trying fails. In the below, we will give a more sophisticated approach to achieve (B.1).

Step One We choose a smooth function \(\hat{\chi }_0(\underline{u}, \omega )\). And we require that for fixed \(\omega \), \(\hat{\chi }_0(\underline{u}, \omega )\in C_{c}^{\infty }([0,\delta ])\) in \(\underline{u}\) variable and for all \(\omega \in {\mathbb {S}}^2\),

$$\begin{aligned} \int _0^{\delta }|\hat{\chi }_0|^2(\underline{u}', \omega )d\underline{u}'=\delta a. \end{aligned}$$

Step Two We choose a number \(\frac{99}{100}\) with property

$$\begin{aligned} \frac{20}{21}\le \frac{99}{100} \le 1 \le \frac{100}{99} \le \frac{22}{21}. \end{aligned}$$

With this number, we decompose \((0,\delta ]\) into dyadic pieces

$$\begin{aligned} (0,\delta ]=\bigcup _{k=0}^{+\infty }\left[ \left( \frac{99}{100}\right) ^{k+1}\delta , \left( \frac{99}{100}\right) ^k \delta \right] . \end{aligned}$$

In \([(\frac{99}{100})^{k+1}\delta , (\frac{99}{100})^k \delta ]\), we let

$$\begin{aligned} |\hat{\chi }|^2(0,\underline{u}, \omega ):=|\hat{\chi }_0|^2\left( \left[ \left( \frac{100}{99}\right) ^{k+1}\underline{u}-\delta \right] \cdot 99, \omega \right) . \end{aligned}$$
(B.4)

Thus,

$$\begin{aligned}&\int _{\left( \frac{99}{100}\right) ^{k+1}\delta }^{\left( \frac{99}{100}\right) ^{k}\delta }|\hat{\chi }|^2(0,\underline{u}', \omega )d\underline{u}'\\&\quad =\int _{\left( \frac{99}{100}\right) ^{k+1}\delta }^{\left( \frac{99}{100}\right) ^{k}\delta }|\hat{\chi }_0|^2\left( \left[ \left( \frac{100}{99}\right) ^{k+1}\underline{u}'-\delta \right] \cdot 99, \omega \right) d\underline{u}'\\&\quad =\left( \frac{99}{100}\right) ^{k+1}\cdot \frac{1}{99}\cdot \int _{\left( \frac{99}{100}\right) ^{k+1}\delta }^{\left( \frac{99}{100}\right) ^{k}\delta }|\hat{\chi }_0|^2\left( \left[ \left( \frac{100}{99}\right) ^{k+1}\underline{u}'-\delta \right] \cdot 99, \omega \right) d \left( \left[ \left( \frac{100}{99}\right) ^{k+1}\underline{u}'-\delta \right] \cdot 99 \right) \\&\quad =\left( \frac{99}{100}\right) ^{k+1}\cdot \frac{1}{99}\cdot \int _0^{\delta }|\hat{\chi }_0|^2(\underline{u}', \omega )d\underline{u}'\\&\quad =\left( \frac{99}{100}\right) ^{k+1}\cdot \frac{1}{99}\cdot \delta a\\&\quad =\left( \frac{99}{100}\right) ^k\cdot \frac{1}{100}\cdot \delta a. \end{aligned}$$

And for fixed \(\omega \), \(|\hat{\chi }|^2(0,\underline{u}, \omega )\in C_c([(\frac{99}{100})^{k+1}\delta , (\frac{99}{100})^{k}\delta ])\) in \(\underline{u}\) variable. Furthermore, we have

$$\begin{aligned}&\sum _{k=0}^{+\infty }\int _{\left( \frac{99}{100}\right) ^{k+1}\delta }^{\left( \frac{99}{100}\right) ^{k}\delta }|\hat{\chi }|^2(0,\underline{u}', \omega )d\underline{u}'\\&\quad =\sum _{k=0}^{+\infty } \left( \frac{99}{100}\right) ^k\cdot \frac{1}{100}\cdot \delta a\\&\quad =\frac{\frac{1}{100}\cdot \delta a}{1-\frac{99}{100}}=\delta a. \end{aligned}$$

Step Three For any \(\underline{u}\in (0,\delta ]\), there exists \(N_0\in {\mathbb {N}}\) such that

$$\begin{aligned} \left( \frac{99}{100}\right) ^{N_0+1}\delta \le \underline{u}\le \left( \frac{99}{100}\right) ^{N_0}\delta . \end{aligned}$$

We thus have

$$\begin{aligned} \int _0^{\left( \frac{99}{100}\right) ^{N_0+1}\delta }|\hat{\chi }|^2(0, \underline{u}', \omega )d\underline{u}' \le \int _0^{\underline{u}}|\hat{\chi }|^2(0, \underline{u}', \omega )d\underline{u}' \le \int _0^{\left( \frac{99}{100}\right) ^{N_0}\delta }|\hat{\chi }|^2(0, \underline{u}', \omega )d\underline{u}'. \end{aligned}$$

On one side

$$\begin{aligned}&\int _0^{\underline{u}}|\hat{\chi }|^2(0, \underline{u}', \omega )d\underline{u}' \\&\quad \le \int _0^{\left( \frac{99}{100}\right) ^{N_0}\delta }|\hat{\chi }|^2(0, \underline{u}', \omega )d\underline{u}'\\&\quad =\frac{\left( \frac{99}{100}\right) ^{N_0}\cdot \frac{1}{100}\cdot \delta a}{1-\frac{99}{100}} =\left( \frac{99}{100}\right) ^{N_0}\cdot \delta a\\&\quad = \frac{100}{99}\cdot \left( \frac{99}{100}\right) ^{N_0+1}\cdot \delta a\le \frac{100}{99}\underline{u}a \le \frac{22}{21}\underline{u}a. \end{aligned}$$

On the other side

$$\begin{aligned}&\int _0^{\underline{u}}|\hat{\chi }|^2(0, \underline{u}', \omega )d\underline{u}' \\&\quad \ge \int _0^{\left( \frac{99}{100}\right) ^{N_0+1}\delta }|\hat{\chi }|^2(0, \underline{u}', \omega )d\underline{u}'\\&\quad =\frac{\left( \frac{99}{100}\right) ^{N_0+1}\cdot \frac{1}{100}\cdot \delta a}{1-\frac{99}{100}} =\left( \frac{99}{100}\right) ^{N_0+1}\cdot \delta a\\&\quad =\frac{99}{100}\cdot \left( \frac{99}{100}\right) ^{N_0}\cdot \delta a \ge \frac{99}{100}\underline{u}a\ge \frac{20}{21}\underline{u}a. \end{aligned}$$

Putting the above inequalities together, for any \(\underline{u}\in (0, \delta ]\) we have

$$\begin{aligned} \int _0^{\underline{u}}|\hat{\chi }|^2(0,\underline{u}', \omega )d\underline{u}'=f(\underline{u}, \omega )\underline{u}a, \quad \quad \text{ with } \quad \quad \frac{20}{21}\le f(\underline{u}, \omega )\le \frac{22}{21}. \end{aligned}$$

Step FourWith initial data \(|\hat{\chi }|^2(0, \underline{u}, \omega )\) prescribed along \(H_0^{(0,\delta ]}\), we need to further check the hyperbolic part. Here we need to note that \(\partial _{\underline{u}} \hat{\chi }\) and \(\alpha \) are very large and tend to \(+\infty \) as \(\underline{u}\rightarrow 0\). However, in [3] by a method of renormalization we avoid using \(\alpha \). Replace \(\delta \) by \(\underline{u}\) in [3], for any \(\underline{u}\in (0, \delta ]\), we consider the region \((u,\underline{u}')\in [b\underline{u}a^{\frac{1}{2}}, 1]\times [0,\underline{u}]\). All the arguments in [3] hold for this region. Then let \(\underline{u}\rightarrow \delta \). With initial data \(|\hat{\chi }|^2(0, \underline{u}, \omega )\) prescribed along \(u=0\) and Minkowski data prescribed along \(\underline{u}=0\), we then have the existence of Einstein vacuum equation in the whole colored region above. And we have a sequence of \(M_{\underline{u}}\), of which the radius \(\rightarrow 0\) as \(\underline{u}\rightarrow 0\).

Remark 15

Another way to construct arbitrary small MOTS is using the following initial data along \(u=0\): fix any large natural number \(N_1\), we then pick up another natural number \(N_2\) such that \(1\ll N_1 \ll N_2\) . For \(\underline{u}\le (\frac{99}{100})^{N_2+1}\), Minkowski data are prescribed along \(u=0\); for \(\underline{u}\ge (\frac{99}{100})^{N_2+1}\) we prescribe \(|\hat{\chi }|^2(0, \underline{u}, \omega )\) as in Step One to Step Three above. Since \(N_1\ll N_2\), for \(\underline{u}\ge (\frac{99}{100})^{N_1+1}\) it still holds

$$\begin{aligned} \int _0^{\underline{u}}|\hat{\chi }|^2(0,\underline{u}', \omega )d\underline{u}'=f(\underline{u}, \omega )\underline{u}a, \quad \quad \text{ with } \quad \quad \frac{20}{21}\le f(\underline{u}, \omega )\le \frac{22}{21}. \end{aligned}$$

Then the smallest MOTS is of radius \((\frac{99}{100})^{N_1+1}\cdot a\). Since \(N_1\) could be any large positive integer, the radius of the smallest MOTS could be arbitrary small.

Appendix C. Construction of Initial Data Along \(H_0^{[0,\delta ]}\): Part II

In this part, we provide examples of initial data satisfying the following two requirements at the same time:

  1. 1.

    The initial data along \(H_0^{[0,\delta ]}\) satisfy

    $$\begin{aligned}&\int _0^{\delta }|\hat{\chi }_0|^2(\underline{u},\omega )d\underline{u}=f(\delta ,\omega )\delta a, \,\, \\&\quad \text{ with } \,\, 1- \frac{1}{c}\le f(\delta , \omega )\le 1+\frac{1}{c}, \,\, \text{ where } \,\, 1\ll c \ll b \le a^{\frac{1}{2}}. \end{aligned}$$
  2. 2.

    Moreover, we require that \(|\hat{\chi }_0|^2(\underline{u}, \omega )\) is almost a constant out of two small discs \(\{D^1_{\underline{u}}\subset {\mathbb {S}}^2\}\) and \(\{D^2_{\underline{u}}\subset {\mathbb {S}}^2\}\) :Footnote 15

    $$\begin{aligned}&0\le |\hat{\chi }_0|^2(\underline{u},\omega )\lesssim a, \quad \text{ for } \quad \omega \in D^1_{\underline{u}}\cup D^2_{\underline{u}},\\&|\hat{\chi }_0|^2(\underline{u}, \omega )=[1+o(1)]\cdot a, \quad \text{ for } \quad \omega \in {\mathbb {S}}^2\setminus \big (D^1_{\underline{u}}\cup D^2_{\underline{u}}\big ) \quad \text{ with } \quad |o(1)|\le 1/c,\\&\iint _{D^1_{\underline{u}}\cup D^2_{\underline{u}}}1\cdot d\omega \lesssim \frac{1}{c^2}. \end{aligned}$$
figure h

We now prescribe characteristic initial data. We follow some basic calculations in Chapter 2 of [15]. For \(\underline{u}\le 0\), we prescribe Minkowskian initial data. For \(0 \le R \le 1\), the surface \(S_{1-R, 0}\) on the boundary \(\underline{H}_0\) of Minkowskian region, is the sphere of radius R in the hyperplane \(t=-R\):

$$\begin{aligned} |x|=R, \quad \quad |x|=\sqrt{x_1^2+x_2^2+x_3^3}. \end{aligned}$$

We use coordinates \((x_1, x_2, x_3)\) to define stereographic coordinates \((\theta _1, \theta _2)\) on \(S_{0,0}\). We thus have two stereographic charts, the north polar chart and the south polar chart.

Denote \(q_2=(0,0,-1)\) to be the south pole. The domain of the north polar chart is then \(U_1=S_{0,0} \backslash q_2\). And the chart is the mapping of \(U_1\) onto \({\mathbb {R}}^2\) by \((x_1, x_2, x_3)\in U_1 \rightarrow (\theta _1, \theta _2)\in {\mathbb {R}}^2\):

$$\begin{aligned} \theta _1=\frac{2x_1}{1+x_3}, \quad \quad \theta _2=\frac{2x_2}{1+x_3}. \end{aligned}$$

Similarly, for the south polar chart:

$$\begin{aligned} \theta _1=\frac{2x_1}{1-x_3}, \quad \quad \theta _2=\frac{2x_2}{1-x_3}. \end{aligned}$$

In both charts, the standard metric on \(S_{0,0}\) is

$$\begin{aligned} \mathring{g}_{AB}(\theta _1, \theta _2)=\frac{\delta _{AB}}{(1+\frac{1}{4}(\theta _1^2+\theta _2^2))^2}. \end{aligned}$$

The transformation from north polar coordinates to south polar coordinates is

$$\begin{aligned} (\theta _1, \theta _2)\rightarrow f(\theta _1, \theta _2)=\frac{(4\theta _1, 4\theta _2)}{\theta _1^2+\theta _2^2}. \end{aligned}$$

Note that \(f=f^{-1}\). We define \((\theta _1', \theta _2')=f(\theta _1, \theta _2)\) and hence \((\theta _1, \theta _2)=f(\theta _1', \theta _2').\)

We then prescribe initial data along \(H_0\). The induced metric \(g|_{S_{0,\underline{u}}}\) can be expressed in the form

$$\begin{aligned} g|_{S_{0,\underline{u}}}=(\phi |_{S_{0,\underline{u}}})^2 \hat{g}|_{S_{0,\underline{u}}}, \end{aligned}$$

where \(\hat{g}|_{S_{0,\underline{u}}}\) satisfies that \(\Phi ^*_{\underline{u}}\hat{g}|_{S_{0,\underline{u}}}\), a metric on \(S_{0,0}\), has the same area form as \(\mathring{g}|_{S_{0,0}}\):

$$\begin{aligned} d\mu _{\Phi ^*_{\underline{u}}\hat{g}|_{S_{0,\underline{u}}}}=d\mu _{\mathring{g}|_{S_{0,0}}}. \end{aligned}$$

In another word,

$$\begin{aligned} \sqrt{\det \hat{g}(0,\underline{u},\theta _1, \theta _2)}=W^2(\theta _1, \theta _2), \quad \text{ where } \quad W(\theta _1, \theta _2)=\frac{1}{1+\frac{1}{4}(\theta _1^2+\theta _2^2)}. \end{aligned}$$

Thus, in both stereographic charts \(\hat{g}\) is given by

$$\begin{aligned} \hat{g}_{AB}(0,\underline{u},\theta _1, \theta _2)=W^2(\theta _1, \theta _2)\,m_{AB}(0,\underline{u}, \theta _1, \theta _2), \end{aligned}$$

where m satisfies \(\det m=1\). Set

$$\begin{aligned} O_{CA}(\theta _1, \theta _2)=\delta _{CA}-\frac{2\theta _C \theta _A}{\theta _1^2+\theta _2^2} \quad \text{ and } \quad \tilde{O} \quad \text{ its } \text{ transpose }. \end{aligned}$$

It is straight forward to check

$$\begin{aligned} \tilde{O}O=I, \quad \quad \tilde{O}=O, \quad \quad \det {O}=-1. \end{aligned}$$

From Chapter 2 in [15], we also have

$$\begin{aligned} m(0, \underline{u}, \theta _1, \theta _2)=\tilde{O}(\theta _1, \theta _2)\,m'(0,\underline{u},\theta _1', \theta _2')\,O(\theta _1, \theta _2), \end{aligned}$$

which we write as

$$\begin{aligned} m=\tilde{O}m' O. \end{aligned}$$
(C.1)

Now the matrix m at a given point on \(H_0\) is a 2-dimensional positive definite symmetric unimodular matrix. Such a matrix has the form \(m= \begin{bmatrix} Z+X &{} Y \\ Y &{} Z-X \end{bmatrix}, \) where \(Z^2-X^2-Y^2=1\) and \(Z\ge 0\). Use exponential map, in north polar chart we can express:

$$\begin{aligned} m(0, \underline{u}, \theta _1, \theta _2)=\exp \Psi (\underline{u}, \theta _1, \theta _2), \end{aligned}$$

where \(\Psi \) is a symmetric trace-free 2-dimensional matrix. And \(\Psi (\underline{u}, \theta _1, \theta _2)\) is the free data we can prescribe along \(H_0\). In the below, we will prescribe \(\Psi (\underline{u}, \theta _1, \theta _2)\) in the north polar chart and \(\Psi '(\underline{u}, \theta _1', \theta _2')\) in the south polar chart such that (C.1) is satisfied.

Consider the standard spherical coordinates \(\{\theta , \phi \}\) on \({\mathbb {S}}^2\), where \(0\le \theta \le \pi \) and \(0\le \phi <2\pi \). Assume \(\theta =0\) and \(\theta =\pi \) are corresponding to the north pole and south pole, respectively. For constant c, we assume \(1\ll c \ll b \le a^{\frac{1}{2}}\).

figure i

In the following, we will prescribe \(\Psi (\underline{u}, \theta _1, \theta _2)\) and \(\Psi '(\underline{u}, \theta _1', \theta _2')\) such that for fixed \(\underline{u}\), in \(\{\theta , \phi \}\) coordinates, we have

  • \(|\hat{\chi }|^2_0(\underline{u}, \theta , \phi )=0\) for \(|\phi -{2\pi \underline{u}}/{\delta }|\le \pi /2c\) and \(|\theta -\pi /2|\le \pi /2c\),

  • \(|\hat{\chi }|^2_0(\underline{u}, \theta , \phi )\le a\) for \(|\phi -{2\pi \underline{u}}/{\delta }|\le \pi /c\) and \(|\theta -\pi /2|\le \pi /c\),

  • \(|\hat{\chi }|^2_0(\underline{u}, \theta , \phi )=0\) for \(|{\pi }-\phi +{2\pi \underline{u}}/{\delta }|\le \pi /2c\) and \(|\phi |\le \pi /2c\),

  • \(|\hat{\chi }|^2_0(\underline{u}, \theta , \phi )\le a\) for \(|{\pi }-\phi +{2\pi \underline{u}}/{\delta }|\le \pi /c\) and \(|\phi |\le \pi /c\),

  • \(|\hat{\chi }|^2_0(\underline{u}, \theta , \phi )=a\) otherwise.

In another word we hope, for fixed \(\underline{u}\), it holds \(|\hat{\chi }|^2_0(\underline{u}, \theta , \phi )=a\) for most points on \({\mathbb {S}}^2\), except for \((\theta , \phi )\) lying in two small discs (with radius \(\pi /c\)) centered at P and Q. Here PQ have coordinates \(\theta =\pi /2, \phi =2\pi \underline{u}/\delta \) and \(\theta =\pi /2, \phi ={\pi }-2\pi \underline{u}/\delta \), respectively. Within these two small discs, it holds \(|\hat{\chi }|^2_0(\underline{u}, \theta , \phi )\le a\).

Fix the north pole. For any point \(P\in {\mathbb {S}}^2\) there is a \(1-1\) correspondence between its stereographic coordinates \((\theta _1(P), \theta _2(P))\) and its spherical coordinates \((\theta (P), \phi (P))\). In particular, we could write

$$\begin{aligned} (\theta , \phi )=(\theta (\theta _1, \theta _2), \phi (\theta _1, \theta _2)). \end{aligned}$$

For simplicity, in the below we omit the explicit forms of \((\theta (\theta _1, \theta _2), \phi (\theta _1, \theta _2))\).

To prescribe \(\Psi (\underline{u},\theta _1, \theta _2)\) in the north polar chart, for \(\sqrt{\theta ^2_1+\theta ^2_2}<20\) we set

$$\begin{aligned} \Psi (\underline{u},\theta _1, \theta _2)=\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\cdot \Psi _0(\underline{u}, \theta _1, \theta _2). \end{aligned}$$

For fixed \(\theta \), we require \(x(\theta , \cdot )\) to be a periodic function with period \(2\pi \) and it will be constructed later. Let

$$\begin{aligned} \Psi _0(\underline{u}, \theta _1, \theta _2)= \begin{bmatrix} 1&{}0\\ 0&{}-1 \end{bmatrix}, \quad \text{ for } \quad \underline{u}>0. \end{aligned}$$

We also define

$$\begin{aligned} m(\underline{u},\theta _1, \theta _2)=\exp (\Psi (\underline{u},\theta _1, \theta _2))=\exp \big (\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\cdot \Psi _0(\underline{u}, \theta _1, \theta _2)\big ). \end{aligned}$$

And for \(\underline{u}>0\), we have

$$\begin{aligned} m(\underline{u},\theta _1, \theta _2)= \begin{bmatrix} \exp \big (\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\big )&{}0\\ 0&{}\exp \big (-\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\big ) \end{bmatrix}, \\ m^{-1}(\underline{u},\theta _1, \theta _2)= \begin{bmatrix} \exp \big (-\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\big )&{}0\\ 0&{}\exp \big (\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\big ) \end{bmatrix}. \end{aligned}$$

Applying

$$\begin{aligned} \frac{d}{d\underline{u}}e^{X(\underline{u})}=\int _0^1 e^{\tau X(\underline{u})}\frac{dX(\underline{u})}{d\underline{u}}e^{(1-\tau )X(\underline{u})}d\tau , \end{aligned}$$

we get

$$\begin{aligned}&{}\frac{\partial }{\partial \underline{u}}m(\underline{u},\theta _1,\theta _2)=\int _0^1 \exp \begin{bmatrix} \sqrt{2} \tau x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}&{}0\\ 0&{}-\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\end{bmatrix}\\&\qquad \times \bigg (\sqrt{2}\cdot \frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\cdot a^{\frac{1}{2}}\bigg ) \begin{bmatrix} 1&{}0\\ 0&{}-1 \end{bmatrix}\\&\qquad \times \exp \begin{bmatrix} \sqrt{2} (1-\tau )\cdot x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}&{}0\\ 0&{}-\sqrt{2} (1-\tau )\cdot x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\end{bmatrix}d\tau \\&\quad =\int _0^1 \exp \begin{bmatrix} \sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}&{}0\\ 0&{}-\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\end{bmatrix}\\&\qquad \times \bigg (\sqrt{2}\cdot \frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\cdot a^{\frac{1}{2}}\bigg )\begin{bmatrix} 1&{}0\\ 0&{}-1 \end{bmatrix} d\tau \\&\quad =\sqrt{2}a^{\frac{1}{2}}\begin{bmatrix} \exp \bigg (\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\bigg )&{}0\\ 0&{}-\exp \bigg (-\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}\bigg ) \end{bmatrix}\\&\qquad \times \bigg (\frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\bigg ). \end{aligned}$$

From Chapter 2 in [15], it holds

$$\begin{aligned} \hat{\chi }_{AB}=\frac{1}{2}\phi ^2\frac{\partial \hat{g}}{\partial \underline{u}}=\frac{1}{2}\phi ^2 W^2(\theta _1, \theta _2)\frac{\partial }{\partial \underline{u}}m_{AB}(\underline{u},\theta _1, \theta _2), \end{aligned}$$

and

$$\begin{aligned} e:=\frac{1}{2} |\hat{\chi }|^2_{g}=&{}\frac{1}{2} (g^{-1})^{CA}\hat{\chi }_{AB}(g^{-1})^{BD}\hat{\chi }_{DC}\\ =&{}\frac{1}{8} (\hat{g}^{-1})^{CA}\frac{\partial \hat{g}_{AB}}{\partial \underline{u}}(\hat{g}^{-1})^{BD}\frac{\partial \hat{g}_{DC}}{\partial \underline{u}}\\ =&{}\frac{1}{8} (m^{-1})^{CA}\left( \frac{\partial m}{\partial \underline{u}}\right) _{AB} (m^{-1})^{BD} \left( \frac{\partial m}{\partial \underline{u}}\right) _{DC}. \end{aligned}$$

For our concrete example, we have

$$\begin{aligned} e= & {} {}\frac{1}{8} (m^{-1})^{CA}\left( \frac{\partial m}{\partial \underline{u}}\right) _{AB} (m^{-1})^{BD} \left( \frac{\partial m}{\partial \underline{u}}x\right) _{DC}\nonumber \\= & {} {}\frac{1}{8}\cdot \bigg (\sqrt{2}\cdot \frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\cdot a^{\frac{1}{2}}\bigg )^2 \cdot \text{ tr }\begin{bmatrix} 1&{}0\\ 0&{}1 \end{bmatrix}\nonumber \\= & {} {}\frac{1}{2} a\cdot \bigg (\frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\bigg )^2. \end{aligned}$$
(C.2)

We now prescribe the function \(\partial x/\partial \phi (\theta , \phi )\). Let \(\partial x/\partial \phi (\theta , \phi )\) to be \(2\pi \)-periodic with respect to \(\phi \) and require

$$\begin{aligned} |\frac{\partial x}{\partial \phi }|(\theta ,\phi )\left\{ \begin{array}{ll} =0 &{} \text{ if } -\frac{\pi }{2c}\le \phi \le \frac{\pi }{2c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ =0 &{} \text{ if } {\pi }-\frac{\pi }{2c}\le \phi \le {\pi }+\frac{\pi }{2c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ \le {\delta }/{2\pi } &{} \text{ if } -\frac{\pi }{c}\le \phi \le \frac{\pi }{c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ \le {\delta }/{2\pi } &{} \text{ if } {\pi }-\frac{\pi }{c}\le \phi \le {\pi }+\frac{\pi }{c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ ={\delta }/{2\pi } &{} \text{ otherwise }. \end{array} \right. \end{aligned}$$

Then in the north polar chart \(\sqrt{\theta _1^2+\theta ^2_2}<20\) we have

$$\begin{aligned}&\frac{1}{2}a\cdot \left( \frac{\partial x}{\partial \phi }\left( \theta , \phi -\frac{2\pi \underline{u}}{\delta }\right) \cdot \frac{-2\pi }{\delta }\right) ^2 \nonumber \\&\quad \left\{ \begin{array}{ll} =0 &{} \text{ if } -\frac{\pi }{2c}\le \phi -\frac{2\pi \underline{u}}{\delta } \le \frac{\pi }{2c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ =0 &{} \text{ if } {\pi }-\frac{\pi }{2c}\le \phi -\frac{2\pi \underline{u}}{\delta } \le {\pi }+\frac{\pi }{2c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ \le {a}/{2} &{} \text{ if } -\frac{\pi }{c}\le \phi -\frac{2\pi \underline{u}}{\delta } \le \frac{\pi }{c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ \le {a}/{2} &{} \text{ if } {\pi }-\frac{\pi }{c}\le \phi -\frac{2\pi \underline{u}}{\delta } \le {\pi }+\frac{\pi }{c} \text{ and } -\frac{\pi }{2c}\le \theta -\frac{\pi }{2}\le \frac{\pi }{2c};\\ ={a}/{2} &{} \text{ otherwise }. \end{array} \right. \end{aligned}$$
(C.3)

Next we extend \(\Psi (\underline{u}, \theta _1, \theta _2)\) to the south polar chart. In \(\frac{1}{5}<\sqrt{\theta _1^2+\theta _2^2}<20\),Footnote 16 we require \(\Psi '(\underline{u}, \theta _1', \theta _2'):=O(\theta _1', \theta _2')\Psi (\underline{u}, \theta _1, \theta _2)O(\theta _1, \theta _2)\). Since \(m(\underline{u}, \theta _1, \theta _2)=\exp \big (\Psi (\underline{u}, \theta _1, \theta _2)\big )\) and \(m'(\underline{u}, \theta _1', \theta _2')=\exp \big (\Psi '(\underline{u}, \theta _1', \theta _2')\big )\), (C.1) follows. Denote \(\tilde{\lambda }:=\sqrt{2} x(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot a^{\frac{1}{2}}.\) We calculate

$$\begin{aligned} e'=&{}\frac{1}{8} (m'^{-1})^{CA}\left( \frac{\partial m'}{\partial \underline{u}}\right) _{AB} (m'^{-1})^{BD}\left( \frac{\partial m'}{\partial \underline{u}}\right) _{DC}\\ =&{}\frac{1}{8} {O^{C}}_{C'}(m^{-1})^{C'A'}{O_{A'}}^{A}{O_{A}}^{A''}\left( \frac{\partial m}{\partial \underline{u}}\right) _{A''B'}\cdot \\&{O^{B'}}_{B}{O^{B}}_{B''}(m^{-1})^{B''D'}{O_{D'}}^{D}{O_{D}}^{D''}\left( \frac{\partial m}{\partial \underline{u}}\right) _{D''C''}{O^{C''}}_{C}\\ =&{}\frac{1}{8} {O^{C}}_{C'}(m^{-1})^{C'A''}\left( \frac{\partial m}{\partial \underline{u}}\right) _{A''B''}(m^{-1})^{B''D''} \left( \frac{\partial m}{\partial \underline{u}}\right) _{D''C''}{O^{C''}}_{C}\\ =&{}\frac{1}{8}\cdot \bigg (\sqrt{2}\cdot \frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\cdot a^{\frac{1}{2}}\bigg )^2\\&\times {O^{C}}_{C'}\begin{bmatrix} e^{-\tilde{\lambda }}&{}0\\ 0&{}e^{\tilde{\lambda }}\end{bmatrix}^{C'A''}\begin{bmatrix} e^{\tilde{\lambda }}&{}0\\ 0&{}-e^{-\tilde{\lambda }}\end{bmatrix}_{A''B''}\begin{bmatrix} e^{-\tilde{\lambda }}&{}0\\ 0&{}e^{\tilde{\lambda }}\end{bmatrix}^{B''D''}\begin{bmatrix} e^{\tilde{\lambda }}&{}0\\ 0&{}-e^{-\tilde{\lambda }}\end{bmatrix}_{D''C''} {O^{C''}}_{C}\\ =&{}\frac{1}{8}\cdot \bigg (\sqrt{2}\cdot \frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\cdot a^{\frac{1}{2}}\bigg )^2 \cdot \text{ tr }\begin{bmatrix} 1&{}0\\ 0&{}1 \end{bmatrix}\\ =&{}\frac{1}{2} a\cdot \bigg (\frac{\partial x}{\partial \phi }(\theta , \phi -\frac{2\pi \underline{u}}{\delta })\cdot \frac{-2\pi }{\delta }\bigg )^2. \end{aligned}$$

Note that by (C.2) e and \(e'\) take the same value at \((\theta _1, \theta _2)\) with \(\frac{1}{5}<\sqrt{\theta _1^2+\theta _2^2}<20\). And in view of (C.3), when the points are close to \(\sqrt{\theta _1^2+\theta _2^2}=\frac{1}{5}\) and \(\sqrt{\theta _1^2+\theta _2^2}=20\), e and \(e'\) are a/2. We then extend \(m'(\underline{u}, \theta _1', \theta _2')\) as a smooth 2-covariant S tensorfield to the south pole chart \(\sqrt{\theta _1'^2+\theta _2'^2}<20\) and require

$$\begin{aligned} e'=\frac{1}{8} (m'^{-1})^{CA}\left( \frac{\partial m'}{\partial \underline{u}}\right) _{AB} (m'^{-1})^{BD} \left( \frac{\partial m'}{\partial \underline{u}}\right) _{DC}=\frac{a}{2} \quad \text{ for } \quad \sqrt{\theta _1'^2+\theta _2'^2}\le \frac{1}{5}. \end{aligned}$$

With the above constructions we find \(|\hat{\chi }_0|^2(\underline{u}, \omega )\): it is a constant out of two small discs \(\{D^1_{\underline{u}}\subset {\mathbb {S}}^2\}\) centered at P and \(\{D^2_{\underline{u}}\subset {\mathbb {S}}^2\}\) centered at Q:

$$\begin{aligned}&0\le |\hat{\chi }_0|^2(\underline{u},\omega )\lesssim a, \quad \text{ for } \quad \omega \in D^1_{\underline{u}}\cup D^2_{\underline{u}}, \\&|\hat{\chi }_0|^2(\underline{u}, \omega )=a, \quad \text{ for } \quad \omega \in {\mathbb {S}}^2\setminus \big (D^1_{\underline{u}}\cup D^2_{\underline{u}}\big ), \\&\iint _{D^1_{\underline{u}}\cup D^2_{\underline{u}}}1\cdot d\omega \lesssim \frac{1}{c^2}. \end{aligned}$$
figure j

At the same time, for fixed \(\theta \) and fixed \(\phi \) we let \(\underline{u}\) vary. Then these two discs \(D^1_{\underline{u}}\) and \(D^2_{\underline{u}}\) rotate (at a speed \(2\pi /\delta \)) along \(\theta =\pi /2\). For \(0<\underline{u}\le \delta \), there are at most two intervals of length \(\delta /c\) such that \(0\le |\hat{\chi }_0|^2\le a\), for all the rest \(\underline{u}\in (0,\delta ]\), we have \(|\hat{\chi }_0|^2=a\). This implies that along \(H_0^{[0,\delta ]}\), \((\hat{\chi }_0)_{ab}(\underline{u},\omega )\) also satisfies

$$\begin{aligned} \int _0^{\delta }|\hat{\chi }_0|^2(\underline{u},\omega )d\underline{u}=f(\delta ,\omega )\delta a, \,\, \text{ with } \,\, 1-\frac{1}{c}\lesssim f(\delta , \omega )\lesssim 1+\frac{1}{c}, \end{aligned}$$

where \(1\ll c \ll b \le a^{\frac{1}{2}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X. Emergence of Apparent Horizon in Gravitational Collapse. Ann. PDE 6, 10 (2020). https://doi.org/10.1007/s40818-020-00085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-020-00085-9

Navigation