Skip to main content
Log in

Adaptive ORFWNN-Based Predictive PID Control

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes a new adaptive proportional–integral–derivative (PID) control method using predictive control and output recurrent fuzzy wavelet neural network (ORFWNN) for a group of nonlinear digital time-delay dynamic systems. The presented controller, called ORFWNN-APPID controller, is rigorously derived and proved by including an ORFWNN identifier with online parameter learning and identification, and an adaptive ORFWNN-based predictive PID controller to achieve precise setpoints tracking and disturbance rejection. The effectiveness and superiority of the constructed ORFWNN-APPID control approach are well demonstrated by performing numerical simulations on step-like disturbance rejection and precise setpoint tracking of two well-known digital nonlinear processes. The practicability of the presented method is illustrated by carrying out two experimental results on a real PET temperature control process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Garces, F., Becerra, V.M., Kambhampati, C., Warwick, K.: Strategies for Feedback Linearization—A Dynamic Neural Network Approach. Springer, New York (2003)

    Google Scholar 

  2. Spooner, J.T., Maggiore, M., Ordonez, R., Passino, K.M.: Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximation Techniques. Wiley, New York (2002)

    Book  Google Scholar 

  3. Henson, M.A., Seborg, D.E.: Nonlinear Process Control. Prentice Hall PTR, New Jersey (1997)

    MATH  Google Scholar 

  4. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Upper Saddle river (2002)

    MATH  Google Scholar 

  5. Huang, S., Tan, K.K., Lee, T.H.: Applied Predictive Control. Springer, New York (2002)

    Google Scholar 

  6. Vega, P., Prada, C., Aleixandre, V.: Self-tuning predictive PID controller. IEE Proc. D Contr. Theory Appl. 138(3), 303–311 (1991)

    Article  MATH  Google Scholar 

  7. Yamamoto, T., Omatu, S., Haneda, M.: A design method of self-tuning PID controllers. In: Proceedings of American Control Conference, pp. 3263–3267 (1994)

  8. Miller, R.M., Kwok, K.E., Shan, S.L., Wood, R.K.: Development of a stochastic predictive PID controller. In: Proceedings of American Control Conference, pp. 4204–4208 (1995)

  9. Tsai, C.C., Lu, C.H.: Multivariable self-tuning temperature control for plastic injection molding process. IEEE Trans. Ind. Appl. 34(2), 310–318 (1998)

    Article  Google Scholar 

  10. Yusof, R., Omatu, S.: A multivariable self-tuning PID controllers. Int. J. Contr. 57(6), 1387–1403 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yusof, R., Omatu, S., Khalid, M.: Self-tuning PID control: a multivariable derivation and application. Automatica 30(12), 1975–1981 (1994)

    Article  MATH  Google Scholar 

  12. Omatu, S., Yusof, R., Sinohara, K., Hotta, M.: Temperature control for heating cylinder by multivariable STC. IEEE Trans. Syst. Contr. Inf. Eng. 5(3), 102–110 (1992). (in Japanese)

    Google Scholar 

  13. Youness, H., Moness, M., Khaled, M.: MPSoCs and multicore microcontrollers for embedded PID control: a detailed study. IEEE Trans. Ind. Inf. 10(4), 2122–2134 (2014)

    Article  Google Scholar 

  14. Yin, J.M., Shin, J.S., Lee, H.H.: On-line tuning PID parameters in an idling engine based on a modified BP neural network by particle swarm optimization. Artif. Life Robot. 14(2), 129–133 (2009)

    Article  Google Scholar 

  15. Han, K.Y., Lee, H.H.: Neuro PID control of power generation using a low temperature gap. Artif. Life Robot. 16(2), 178–184 (2011)

    Article  Google Scholar 

  16. Yu, D.L., Chang, T.K., Yu, D.W.: Fault tolerant control of multivariable processes using auto-tuning PID controller. IEEE Trans. Syst. Man Cybern. B Cybern. 35(1), 32–43 (2005)

    Article  MathSciNet  Google Scholar 

  17. Macku, L., Sámek, D.: Two step, PID and model predictive control using artificial neural network applied on semi-batch reactor. WSEAS Trans. Syst. 9(10), 1039–1049 (2010)

    Google Scholar 

  18. Khan, M.A.S.K., Rahman, M.A.: Implementation of a wavelet-based MRPID controller for benchmark thermal system. IEEE Trans. Ind. Electron. 57(12), 4160–4169 (2010)

    Article  Google Scholar 

  19. Strumiłło, P., Kamiński, W.: Neural Networks and Soft Computing, pp. 107–119. Springer, New York (2003)

    Book  Google Scholar 

  20. Tsai, C.C., Tai, F.C., Chang, Y.L., Tsai, C.T.: Adaptive predictive PID control using fuzzy wavelet neural networks for nonlinear discrete-time time-delay systems. Int. J. Fuzzy Syst. 19(6), 1718–1730 (2017)

    Article  MathSciNet  Google Scholar 

  21. Abiyev, R.H., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants-A novel structure and a comparative study. IEEE Trans. Ind. Electron. 55(8), 3133–3140 (2008)

    Article  Google Scholar 

  22. Tsai, C.C., Wu, H.L., Tai, F.C., Chen, Y.S.: Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks. Int. J. Fuzzy Syst. 19(5), 1375–1391 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lu, C.H.: Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans. Ind. Electr. 56, 3733–3742 (2009)

    Article  Google Scholar 

  24. Tsai, C.C., Chang, Y.L.: Self-tuning PID control using recurrent wavelet neural networks. In: Proceedings of 2012 IEEE International Conference on Systems, Man, and Cybernetics, Soul, Korea, October 14–17 (2012)

  25. El-Sousy, F.F.M., Abuhasel, K.: Self-organizing recurrent fuzzy wavelet neural network-based mixed H2/H adaptive tracking control for uncertain two-axis motion control system. IEEE Trans. Ind. Appl. 52(6), 5139–5155 (2016)

    Article  Google Scholar 

  26. Kuo, C.W., Tsai, C.C.: Quaternion-based adaptive backstepping RFWNN control of quadrotors subject to model uncertainties and disturbances. Int. J. Fuzzy Syst. 20(6), 1745–1755 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y.C., Chien, C.J., Lee, D.T.: An output recurrent fuzzy neural network based iterative learning control for nonlinear systems. In: Proceedings of 2008 IEEE International Conference on Fuzzy Systems (FUZZ 2008), June 1–6, pp. 1563–1569

  28. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  29. Lu, C.H.: Wavelet fuzzy neural networks for identification and predictive control of dynamic systems. IEEE Trans. Ind. Electron. 58(7), 3046–3058 (2011)

    Article  Google Scholar 

  30. Tsai, C.C., Chang, Y.L.: Self-tuning PID control using recurrent wavelet neural networks. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, October 14–17, pp. 3105–3110 (2012)

  31. Tsai, C.C., Chang, Y.L., Tung, S.L.: Two DOF temperature control using RBFNN for stretch PET blow molding machines. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, October 5–8, pp. 1759–1764 (2014)

  32. Chang, Y.L., Tsai, C.C.: Adaptive predictive PID control using fuzzy wavelet neural networks for nonlinear discrete-time time-delay systems. In: Proceedings of International Conference on Fuzzy Theory and Its Applications, Taichung, Taiwan, November 9–11 (2016)

  33. Tsai, C., Chang, Y.L.: Two degree-of-freedom control using recurrent fuzzy neural networks for a class of nonlinear discrete-time time-delay systems. In: Proceedings of International Conference on Systems Engineering, June 29–July 3, pp. 85–90 (2012)

  34. Tsai, C.T., Tsai, C.C.: Digital command feedforward and PID temperature control for PET stretch blow molding machines. In: Proceedings of 11th Asian Control Conference (ASCC), December 17–20, pp. 1128–1133 (2017)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Science and Technology (MOST), Republic of China, under Contract MOST 107-2221-E-005-073-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chih Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CC., Yu, CC. & Tsai, CT. Adaptive ORFWNN-Based Predictive PID Control. Int. J. Fuzzy Syst. 21, 1544–1559 (2019). https://doi.org/10.1007/s40815-019-00650-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00650-w

Keywords

Navigation