Skip to main content
Log in

Group Multi-criteria Decision Making Method with Triangular Type-2 Fuzzy Numbers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Type-2 fuzzy sets/numbers (T2FSs/T2FNs) attract more and more attention in fuzzy decision field. The existing studies mostly focus on the general properties of T2FS, or interval type-2 fuzzy number whose membership degrees are denoted by intervals. A new form of T2FN named triangular type-2 fuzzy number is proposed, whose primary and secondary memberships both have the continuous triangular feature. For aggregating the triangular type-2 fuzzy information, two operators are also defined. Based on them, a method is developed to handle the duplex linguistic group multi-criteria decision making problems and rank the alternatives. Finally, an example is provided to show the feasibility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Merigó, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 27, 420–433 (2015)

    Article  Google Scholar 

  2. Zadeh, L.A.: Fuzzy set. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, Z.S., Zhang, X.L.: Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowl. Based Syst. 52, 53–64 (2013)

    Article  Google Scholar 

  4. Yang, W.E., Wang, J.Q.: Multi-criteria semantic dominance: a linguistic decision aiding technique based on incomplete preference information. Eur. J. Oper. Res. 231(1), 171–181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, J., Wang, J.Q., Zhang, H.Y., Chen, X.H.: Multi-criteria group decision making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. (2015). doi:10.1007/s40815-015-0050-3

    MathSciNet  Google Scholar 

  6. Patra, K., Mondal, S.K.: Fuzzy risk analysis using area and height based similarity measure on generalized trapezoidal fuzzy numbers and its application. Appl. Soft Comput. 28, 276–284 (2015)

    Article  Google Scholar 

  7. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, P.D., Liu, Z.M., Zhang, X.: Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl. Math. Comput. 230, 570–586 (2014)

    MathSciNet  Google Scholar 

  9. Tao, Z., Chen, H., Zhou, L., Liu, J.: A generalized multiple attributes group decision making approach based on intuitionistic fuzzy sets. Int. J. Fuzzy Syst. 16(2), 184–195 (2014)

    MathSciNet  Google Scholar 

  10. Wang, J.Q., Han, Z.Q., Zhang, H.Y.: Multi-criteria group decision making method based on intuitionistic interval fuzzy information. Group Decis. Negot. 23, 715–733 (2014)

    Article  Google Scholar 

  11. Wan, S.P., Wang, Q.Y., Dong, J.Y.: The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers. Knowl. Based Syst. 52, 65–77 (2013)

    Article  Google Scholar 

  12. Tan, C.Q., Ma, B.J., Wu, D.S.D., Chen, X.H.: Multi-criteria decision making methods based on interval-valued intuitionistic fuzzy sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 22(3), 475–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wei, G.W., Lin, R., Zhao, X.F., Wang, H.J.: An approach to multiple attribute decision making based on the induced Choquet integral with fuzzy number intuitionistic fuzzy information. J. Bus. Econ. Manag. 15(2), 277–298 (2014)

    Article  Google Scholar 

  14. Liu, P.D., Yu, X.C.: 2-Dimension uncertain linguistic power generalized weighted aggregation operator and its application in multiple attribute group decision making. Knowl. Based Syst. 57, 69–80 (2014)

    Article  Google Scholar 

  15. Zhang, H., Shu, L.: Generalized interval-valued fuzzy rough set and its application in decision making. Int. J. Fuzzy Syst. 17(2), 279–291 (2015)

    Article  MathSciNet  Google Scholar 

  16. Merigó, J.M., Casanovas, M., Liu, P.D.: Decision making with fuzzy induced heavy ordered weighted averaging operators. International Journal of Fuzzy Systems 16(3), 277–289 (2014)

    Google Scholar 

  17. Sevastjanov, P., Figat, P.: Aggregation of aggregating modes in MCDM: synthesis of Type 2 and Level 2 fuzzy sets. Omega 35(5), 505–523 (2007)

    Article  Google Scholar 

  18. Torshizi, A.D., Zarandi, M.H.F., Zakeri, H.: On type-reduction of type-2 fuzzy sets: a review. Appl. Soft Comput. 27, 614–627 (2015)

    Article  Google Scholar 

  19. Celik, E., Gul, M., Aydin, N., Gumus, A.T., Guneri, A.F.: A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowl. Based Syst. 85, 329–341 (2015)

    Article  Google Scholar 

  20. Gera, Z., Dombi, J.: Type-2 implications on non-interactive fuzzy truth values. Fuzzy Sets Syst. 159(22), 3014–3032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harding, J., Walker, C., Walker, E.: The variety generated by the truth value algebra of type-2 fuzzy sets. Fuzzy Sets Syst. 161(5), 735–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hwang, C.M., Yang, M.S., Hung, W.L., Lee, E.S.: Similarity, inclusion and entropy measures between type-2 fuzzy sets based on the Sugeno integral. Math. Comput. Model. 53(9–10), 1788–1797 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhai, D.Y., Mendel, J.M.: Uncertainty measures for general Type-2 fuzzy sets. Inf. Sci. 181(3), 503–518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, J.H., Zhang, Y., Chen, X.H., Liu, Y.M.: Multi-criteria decision-making method based on possibility degree of interval type-2 fuzzy number. Knowl. Based Syst. 43, 21–29 (2013)

    Article  Google Scholar 

  25. Dereli, T., Baykasoglu, A., Altun, K., Durmusoglu, A., Türksen, I.B.: Industrial applications of type-2 fuzzy sets and systems: a concise review. Comput. Ind. 62(2), 125–137 (2011)

    Article  Google Scholar 

  26. Wu, D.R., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179(8), 1169–1192 (2009)

    Article  MathSciNet  Google Scholar 

  27. Wang, J.Q., Yu, S.M., Wang, J., Chen, Q.H., Zhang, H.Y., Chen, X.H.: An interval type-2 fuzzy number based approach for multi-criteria group decision-making problems. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 23(4), 565–588 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, J., Chen, Q.H., Zhang, H.Y., Chen, X.H., Wang, J.Q.: Multi-criteria decision-making method based on type-2 fuzzy sets. FILOMAT (2015)

  29. Akay, D., Kulak, O., Henson, B.: Conceptual design evaluation using interval type-2 fuzzy informationaxiom. Comput. Ind. 62(2), 138–146 (2011)

    Article  Google Scholar 

  30. Qin, R., Liu, Y.K., Liu, Z.Q.: Methods of critical value reduction for type-2 fuzzy variables and their applications. J. Comput. Appl. Math. 235(5), 1454–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ngan, S.C.: A type-2 linguistic set theory and its application to multi-criteria decision making. Comput. Ind. Eng. 64(2), 721–730 (2013)

    Article  Google Scholar 

  32. Tian, Z.P., Zhang, H.Y., Wang, J., Wang, J.Q., Chen, X.H.: Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. (2015). doi: 10.1080/00207721.2015.1102359

  33. Chen, T.Y., Chang, C.H., Lu, J.F.R.: The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. Eur. J. Oper. Res. 226(3), 615–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gong, Y.B.: Fuzzy multi-attribute group decision making method based on interval type-2 fuzzy sets and applications to global supplier selection. Int. J. Fuzzy Syst. 15(4), 392–400 (2013)

    MathSciNet  Google Scholar 

  35. Zhang, Z.M., Zhang, S.H.: A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Appl. Math. Model. 37(7), 4948–4971 (2013)

    Article  MathSciNet  Google Scholar 

  36. Pei, Z.: A note on the TOPSIS method in MADM problems with linguistic evaluations. Appl. Soft Comput. 36, 24–35 (2015)

    Article  Google Scholar 

  37. Liu, J., Guo, L., Jiang, J., Hao, L., Liu, R., Wang, P.: Evaluation and selection of emergency treatment technology based on dynamic fuzzy GRA method for chemical contingency spills. J. Hazard. Mater. 299, 306–315 (2015)

    Article  Google Scholar 

  38. Tavana, M., Caprio, D.D., Santos-Arteaga, F.J.: An optimal information acquisition model for competitive advantage in complex multiperspective environments. Appl. Math. Comput. 240, 175–199 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Yang, W.E., Wang, J.Q., Wang, X.F.: An outranking method for multi-criteria decision making with duplex linguistic information. Fuzzy Sets Syst. 198, 20–33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mendel, J.M., John, R.I., Liu, F.L.: Interval type-2 fuzzy logical systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  41. Wang, J.Q., Nie, R.R., Zhang, H.Y., Chen, X.H.: New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Inf. Sci. 251, 79–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wan, S.P.: 2-Tuple linguistic hybrid arithmetic aggregation operators and application to multi-attribute group decision making. Knowl. Based Syst. 45, 31–40 (2013)

    Article  Google Scholar 

  43. Emrouznejad, A., Marra, M.: Ordered weighted averaging operators 1988-2014: a citation based literature survey. Int. J. Intell. Syst. 29(11), 994–1014 (2014)

    Article  Google Scholar 

  44. Merigó, J.M., Casanovas, M.: The fuzzy generalized OWA operator and its application in strategic decision making. Cybern. Syst. 41(5), 359–370 (2010)

    Article  Google Scholar 

  45. Merigó, J.M.: Fuzzy multi-person decision making with fuzzy probabilistic aggregation operators. Int. J. Fuzzy Syst. 13(3), 163–174 (2011)

    MathSciNet  Google Scholar 

  46. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. B 18(1), 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, C.T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114(1), 1–9 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referees for their valuable comments that helped us considerably improve the paper. This work was supported by the National Natural Science Foundation of China (Nos. 71271218 and 71401185).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-qiu Han or Jian-qiang Wang.

Appendix

Appendix

The Proof of Property 1

Since the properties (1), (3), (4) are easy to proof, here the property (2) is proofed. As \(a_{i} \ge 0\) \(\left( {i = 1,2,3} \right)\), from definition 3:

$$\tilde{a}_{1} + \tilde{a}_{2} = \left\langle {\left[ {a_{1} + a_{2} ,b_{1} + b_{2} ,c_{1} + c_{2} } \right];\left[ {\frac{{\left\| {\tilde{a}_{1} } \right\|\mu_{1}^{L} + \left\| {\tilde{a}_{2} } \right\|\mu_{2}^{L} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\mu_{1}^{M} + \left\| {\tilde{a}_{2} } \right\|\mu_{2}^{M} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\mu_{1}^{R} + \left\| {\tilde{a}_{2} } \right\|\mu_{2}^{R} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}}} \right]} \right\rangle$$

Thus,

$$(\tilde{a}_{1} + \tilde{a}_{2} ) + \tilde{a}_{3} = \left\langle {[a_{1} + a_{2} ,b_{1} + b_{2} ,c_{1} + c_{2} ];\left[ {\frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{1}^{L} + \left\| {\tilde{a}_{2} } \right\|\mu _{2}^{L} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{1}^{M} + \left\| {\tilde{a}_{2} } \right\|\mu _{2}^{M} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{1}^{R} + \left\| {\tilde{a}_{2} } \right\|\mu _{2}^{R} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}}} \right]} \right\rangle + \left\langle {\left[ {a_{3} ,b_{3} ,c_{3} } \right];\left[ {\mu _{3}^{L} ,\mu _{3}^{M} ,\mu _{3}^{R} } \right]} \right\rangle = \left\langle [(a_{1} + a_{2} ) + a_{3} ,(b_{1} + b_{2} ) + b_{3} ,(c_{1} + c_{2} ) + c_{3} ];\left[\frac{{\frac{1}{4}(a_{1} + a_{2} + c_{1} + c_{2} + 2b_{1} + 2b_{2} ) \cdot \frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{{\tilde{a}_{1} }}^{L} + \left\| {\tilde{a}_{2} } \right\|\mu _{{\tilde{a}_{2} }}^{L} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}} + \left\| {\tilde{a}_{3} } \right\|\mu _{{\tilde{a}_{3} }}^{L} }}{{\frac{1}{4}(a_{1} + a_{2} + c_{1} + c_{2} + 2b_{1} + 2b_{2} ) + \frac{1}{4}(a_{3} + c_{3} + 2b_{3} )}}, \frac{{\frac{1}{4}(a_{1} + a_{2} + c_{1} + c_{2} + 2b_{1} + 2b_{2} ) \cdot \frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{{\tilde{a}_{1} }}^{M} + \left\| {\tilde{a}_{2} } \right\|\mu _{{\tilde{a}_{2} }}^{M} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}} + \left\| {\tilde{a}_{3} } \right\|\mu _{{\tilde{a}_{3} }}^{M} }}{{\frac{1}{4}(a_{1} + a_{2} + c_{1} + c_{2} + 2b_{1} + 2b_{2} ) + \frac{1}{4}(a_{3} + c_{3} + 2b_{3} )}},\frac{{\frac{1}{4}(a_{1} + a_{2} + c_{1} + c_{2} + 2b_{1} + 2b_{2} ) \cdot \frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{{\tilde{a}_{1} }}^{R} + \left\| {\tilde{a}_{2} } \right\|\mu _{{\tilde{a}_{2} }}^{R} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\|}} + \left\| {\tilde{a}_{3} } \right\|\mu _{{\tilde{a}_{3} }}^{R} }}{{\frac{1}{4}(a_{1} + a_{2} + c_{1} + c_{2} + 2b_{1} + 2b_{2} ) + \frac{1}{4}(a_{3} + c_{3} + 2b_{3} )}}\right] \right\rangle = \left\langle [a_{1} + a_{2} + a_{3} ,b_{1} + b_{2} + b_{3} ,c_{1} + c_{2} + c_{3} ];\left[\frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{{\tilde{a}_{1} }}^{L} + \left\| {\tilde{a}_{2} } \right\|\mu _{{\tilde{a}_{2} }}^{L} + \left\| {\tilde{a}_{3} } \right\|\mu _{{\tilde{a}_{3} }}^{L} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{{\tilde{a}_{1} }}^{M} + \left\| {\tilde{a}_{2} } \right\|\mu _{{\tilde{a}_{2} }}^{M} + \left\| {\tilde{a}_{3} } \right\|\mu _{{\tilde{a}_{3} }}^{M} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}}, \frac{{\left\| {\tilde{a}_{1} } \right\|\mu _{{\tilde{a}_{1} }}^{R} + \left\| {\tilde{a}_{2} } \right\|\mu _{{\tilde{a}_{2} }}^{R} + \left\| {\tilde{a}_{3} } \right\|\mu _{{\tilde{a}_{3} }}^{R} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}}\right]\right\rangle$$

Similarly,

$$\begin{aligned} \tilde{a}_{1} + (\tilde{a}_{2} + \tilde{a}_{3} ) &= \left\langle {\left[ {a_{1} ,b_{1} ,c_{1} } \right];\left[ {\mu _{1}^{L} ,\mu _{1}^{M} ,\mu _{1}^{R} } \right]} \right\rangle\,+\,\left\langle {[a_{2} + a_{3} ,b_{2} + b_{3} ,c_{2} + c_{3} ]; \left[ {\frac{{\left\| {\tilde{a}_{2} } \right\|\mu _{2}^{L} + \left\| {\tilde{a}_{3} } \right\|\mu _{3}^{L} }}{{\left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}},\frac{{\left\| {\tilde{a}_{2} } \right\|\mu _{2}^{M} + \left\| {\tilde{a}_{3} } \right\|\mu _{3}^{M} }}{{\left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}},\frac{{\left\| {\tilde{a}_{2} } \right\|\mu _{2}^{R} + \left\| {\tilde{a}_{3} } \right\|\mu _{3}^{R} }}{{\left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}}} \right]} \right\rangle \\ & = \left\langle {\left[ {a_{1} + a_{2} + a_{3} ,b_{1} + b_{2} + b_{3} ,c_{1} + c_{2} + c_{3} } \right];\left[ \begin{aligned} \frac{{\left\| {\tilde{a}_{1} } \right\|\mu_{{\tilde{a}_{1} }}^{L} + \left\| {\tilde{a}_{2} } \right\|\mu_{{\tilde{a}_{2} }}^{L} + \left\| {\tilde{a}_{3} } \right\|\mu_{{\tilde{a}_{3} }}^{L} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\mu_{{\tilde{a}_{1} }}^{M} + \left\| {\tilde{a}_{2} } \right\|\mu_{{\tilde{a}_{2} }}^{M} + \left\| {\tilde{a}_{3} } \right\|\mu_{{\tilde{a}_{3} }}^{M} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}}, \hfill \\ \quad \frac{{\left\| {\tilde{a}_{1} } \right\|\mu_{{\tilde{a}_{1} }}^{R} + \left\| {\tilde{a}_{2} } \right\|\mu_{{\tilde{a}_{2} }}^{R} + \left\| {\tilde{a}_{3} } \right\|\mu_{{\tilde{a}_{3} }}^{R} }}{{\left\| {\tilde{a}_{1} } \right\| + \left\| {\tilde{a}_{2} } \right\| + \left\| {\tilde{a}_{3} } \right\|}} \hfill \\ \end{aligned} \right]} \right\rangle \\ \end{aligned}$$

So \((\tilde{a}_{1} + \tilde{a}_{2} ) + \tilde{a}_{3} = \tilde{a}_{1} + (\tilde{a}_{2} + \tilde{a}_{3} )\).□

The Proof of Property 3

\(0 \le P(\tilde{a}_{1} \ge \tilde{a}_{2} ) \le 1\) is easy to proof.

$$\begin{aligned} P(\tilde{a}_{1} \ge \tilde{a}_{1} ) & = \frac{{\hbox{min} \left\{ {l_{1} \mu_{1} + l_{1} \mu_{1} ,\hbox{max} ((b_{1} + c_{1} )\mu_{1} - (a_{1} + b_{1} )\mu_{1} ,0)} \right\}}}{{l_{1} \mu_{1} + l_{1} \mu_{1} }} \\ & = \frac{{\hbox{min} \left\{ {l_{1} \mu_{1} + l_{1} \mu_{1} ,\hbox{max} (\mu_{1} l_{1} ,0)} \right\}}}{{l_{1} \mu_{1} + l_{1} \mu_{1} }} = \frac{{l_{1} \mu_{1} }}{{l_{1} \mu_{1} + l_{1} \mu_{1} }} = 0.5. \\ \end{aligned}$$

The Proof of Property 4

$$P(\tilde{a}_{1} \ge \tilde{a}_{2} ) = \frac{{\hbox{min} \left\{ {l_{1} \mu_{1} + l_{2} \mu_{2} ,\hbox{max} ((b_{1} + c_{1} )\mu_{1} - (a_{2} + b_{2} )\mu_{2} ,0)} \right\}}}{{l_{1} \mu_{1} + l_{2} \mu_{2} }}$$
$$P(\tilde{a}_{2} \ge \tilde{a}_{1} ) = \frac{{\hbox{min} \left\{ {l_{1} \mu_{1} + l_{2} \mu_{2} ,\hbox{max} ((b_{2} + c_{2} )\mu_{2} - (a_{1} + b_{1} )\mu_{1} ,0)} \right\}}}{{l_{1} \mu_{1} + l_{2} \mu_{2} }}$$
  1. (1)

    If \((b_{1} + c_{1} )\mu_{1} \le (a_{2} + b_{2} )\mu_{2}\), So, \((a_{1} + b_{1} )\mu_{1} \le (b_{1} + c_{1} )\mu_{1} \le (a_{2} + b_{2} )\mu_{2} \le (b_{2} + c_{2} )\mu_{2}\),

    $$P(\tilde{a}_{1} \ge \tilde{a}_{2} ) = 0,$$
    $$\begin{aligned} P(\tilde{a}_{2} \ge \tilde{a}_{1} ) = \frac{{\hbox{min} \left\{ {l_{1} \mu_{1} + l_{2} \mu_{2} ,(b_{2} + c_{2} )\mu_{2} - (a_{1} + b_{1} )\mu_{1} } \right\}}}{{l_{1} \mu_{1} + l_{2} \mu_{2} }} \hfill \\ \quad \quad \quad \quad \,\, = \frac{{\hbox{min} \left\{ {(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} ,(b_{2} + c_{2} )\mu_{2} - (a_{1} + b_{1} )\mu_{1} } \right\}}}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }}. \hfill \\ \end{aligned}$$

    Because \([(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} ] - [(b_{2} + c_{2} )\mu_{2} - (a_{1} + b_{1} )\mu_{1} ] = (\mu_{1} c_{1} - \mu_{2} a_{2} ) - (\mu_{2} b_{2} - \mu_{1} b_{1} )\), and \((\mu_{1} c_{1} - \mu_{2} a_{2} ) - (\mu_{2} b_{2} - \mu_{1} b_{1} ) = (b_{1} + c_{1} )\mu_{1} - (a_{2} + b_{2} )\mu_{2} \le 0\), so \(\mu_{1} c_{1} - \mu_{2} a_{2} \le \mu_{2} b_{2} - \mu_{1} b_{1}\),\((c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} \le (b_{2} + c_{2} )\mu_{2} - (a_{1} + b_{1} )\mu_{1}\). That is \(P(\tilde{a}_{2} \ge \tilde{a}_{1} ) = 1\). So \(P(\tilde{a}_{1} \ge \tilde{a}_{2} ) + P(\tilde{a}_{2} \ge \tilde{a}_{1} ) = 1.\)

  2. (2)

    If \((b_{1} + c_{1} )\mu_{1} > (a_{2} + b_{2} )\mu_{2}\), \((b_{2} + c_{2} )\mu_{2} \le (a_{1} + b_{1} )\mu_{1}\), it is the same as 1)

  3. (3)

    If \((b_{1} + c_{1} )\mu_{1} > (a_{2} + b_{2} )\mu_{2}\), \((b_{2} + c_{2} )\mu_{2} > (a_{1} + b_{1} )\mu_{1}\), then

    $$\begin{aligned} P(\tilde{a}_{1} \ge \tilde{a}_{2} ) & = \frac{{\hbox{min} \left\{ {(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} ,(b_{1} + c_{1} )\mu_{1} - (a_{2} + b_{2} )\mu_{2} } \right\}}}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }} \\ & = \frac{{\hbox{min} \left\{ {c_{1} \mu_{1} - a_{1} \mu_{1} + c_{2} \mu_{2} - a_{2} \mu_{2} ,b_{1} \mu_{1} + c_{1} \mu_{1} - a_{2} \mu_{2} - b_{2} \mu_{2} } \right\}}}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }}. \\ \end{aligned}$$

    Because \((c_{1} \mu_{1} - a_{1} \mu_{1} + c_{2} \mu_{2} - a_{2} \mu_{2} ) - (b_{1} \mu_{1} + c_{1} \mu_{1} - a_{2} \mu_{2} - b_{2} \mu_{2} ) = c_{2} \mu_{2} - a_{1} \mu_{1} - b_{1} \mu_{1} + b_{2} \mu_{2}\), and \(c_{2} \mu_{2} - a_{1} \mu_{1} - b_{1} \mu_{1} + b_{2} \mu_{2} = (b_{2} + c_{2} )\mu_{2} - (a_{1} + b_{1} )\mu_{1} > 0\), so \(c_{1} \mu_{1} - a_{1} \mu_{1} + c_{2} \mu_{2} - a_{2} \mu_{2} > b_{1} \mu_{1} + c_{1} \mu_{1} - a_{2} \mu_{2} - b_{2} \mu_{2}\), that is \(P(\tilde{a}_{1} \ge \tilde{a}_{2} ) = \frac{{b_{1} \mu_{1} + c_{1} \mu_{1} - a_{2} \mu_{2} - b_{2} \mu_{2} }}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }}\). There also have \(P(\tilde{a}_{2} \ge \tilde{a}_{1} ) = \frac{{(b_{2} + c_{2} )\mu_{2} - (a_{1} + b_{1} )\mu_{1} }}{{l_{1} \mu_{1} + l_{2} \mu_{2} }} = \frac{{b_{2} \mu_{2} + c_{2} \mu_{2} - a_{1} \mu_{1} - b_{1} \mu_{1} }}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }}\), and \(P(\tilde{a}_{1} \ge \tilde{a}_{2} ) + P(\tilde{a}_{2} \ge \tilde{a}_{1} )\) \(= \frac{{b_{1} \mu_{1} + c_{1} \mu_{1} - a_{2} \mu_{2} - b_{2} \mu_{2} }}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }} + \frac{{b_{2} \mu_{2} + c_{2} \mu_{2} - a_{1} \mu_{1} - b_{1} \mu_{1} }}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }} = \frac{{c_{1} \mu_{1} - a_{2} \mu_{2} + c_{2} \mu_{2} - a_{1} \mu_{1} }}{{(c_{1} - a_{1} )\mu_{1} + (c_{2} - a_{2} )\mu_{2} }}\) \(= 1\). So \(P(\tilde{a}_{1} \ge \tilde{a}_{2} ) + P(\tilde{a}_{2} \ge \tilde{a}_{1} ) = 1\). □

The Proof of Theorem 2

Obviously, from definition 3, the sum of PTT2FNs is also a PTT2FN. In the following, equation (2) is proved by using mathematical induction on \(n\).

  1. (1)

    For \(n = 2\), since

    $$\begin{aligned} &\sum\limits_{i = 1}^{2} {\omega_{i} \tilde{a}_{i} } = \langle \left[ {\omega_{1} a_{1} + \omega_{2} a_{2} ,\omega_{1} b_{1} + \omega_{2} b_{2} ,\omega_{1} c_{1} + \omega_{2} c_{2} } \right]; \\ &\left[ {\frac{{\left\| {\tilde{a}_{1} } \right\|\omega_{1} \mu_{1}^{L} + \left\| {\tilde{a}_{2} } \right\|\omega_{2} \mu_{2}^{L} }}{{\omega_{1} \left\| {\tilde{a}_{1} } \right\| + \omega_{2} \left\| {\tilde{a}_{2} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\omega_{1} \mu_{1}^{M} + \left\| {\tilde{a}_{2} } \right\|\omega_{2} \mu_{2}^{M} }}{{\omega_{1} \left\| {\tilde{a}_{1} } \right\| + \omega_{2} \left\| {\tilde{a}_{2} } \right\|}},\frac{{\left\| {\tilde{a}_{1} } \right\|\omega_{1} \mu_{1}^{R} + \left\| {\tilde{a}_{2} } \right\|\omega_{2} \mu_{2}^{R} }}{{\omega_{1} \left\| {\tilde{a}_{1} } \right\| + \omega_{2} \left\| {\tilde{a}_{2} } \right\|}}} \right]\rangle \\ \end{aligned}$$

    then the Eq. (2) is clearly true.

  2. (2)

    If Eq. (2) holds for \(n = k\), that is

    $$\sum\limits_{i = 1}^{k} {\omega_{i} \tilde{a}_{i} = \left\langle {\left[ {\sum\limits_{i = 1}^{k} {\omega_{i} a_{i}^{{}} } ,\sum\limits_{i = 1}^{k} {\omega_{i} b_{i} } ,\sum\limits_{i = 1}^{k} {\omega_{i} c_{i} } } \right];\left[ {\frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{L} } }}{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }},\frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{M} } }}{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }},\frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{R} } }}{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }}} \right]} \right\rangle }$$

Then, when \(n = k + 1\), by the operational laws in Definition 3, there is:

$$\sum\limits_{i = 1}^{k + 1} {\omega_{i} \tilde{a}_{i} } = \sum\limits_{i = 1}^{k} {\omega_{i} \tilde{a}_{i} } + \omega_{k + 1} \tilde{a}_{k + 1} = \left\langle \left[ {\sum\limits_{i = 1}^{k} {\omega_{i} a_{i} } ,\sum\limits_{i = 1}^{k} {\omega_{i} b_{i} } ,\sum\limits_{i = 1}^{k} {\omega_{i} c_{i} } } \right]; \left[ {\frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{L} } }}{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }},\frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{M} } }}{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }},\frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{R} } }}{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }}} \right] \right\rangle + \left\langle {\left[ {\omega_{k + 1} a_{k + 1} ,\omega_{k + 1} b_{k + 1} ,\omega_{k + 1} c_{k + 1} } \right];\mu_{k + 1}^{L} ,\mu_{k + 1}^{M} ,\mu_{k + 1}^{R} } \right\rangle = \left\langle \left[ {\sum\limits_{i = 1}^{k} {\omega_{i} a_{i} } + \omega_{k + 1} a_{k + 1} ,\sum\limits_{i = 1}^{k} {\omega_{i} b_{i} } + \omega_{k + 1} b_{k + 1} ,\sum\limits_{i = 1}^{k} {\omega_{i} c_{i} } + \omega_{k + 1} c_{k + 1} } \right]; \left[\frac{{\frac{{\left( {\sum\nolimits_{i = 1}^{k} {a_{i} } + 2\sum\nolimits_{i = 1}^{k} {b_{i} } + \sum\nolimits_{i = 1}^{k} {c_{i} } } \right)\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\mu_{i}^{L} } }}{{4\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|} }}\omega_{i} + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} \mu_{k + 1}^{L} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k} {a_{i} } + 2\sum\nolimits_{i = 1}^{k} {b_{i} } + \sum\nolimits_{i = 1}^{k} {c_{i} } } \right)\omega_{i} + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} }}, \frac{{\frac{{\left( {\sum\nolimits_{i = 1}^{k} {a_{i} } + 2\sum\nolimits_{i = 1}^{k} {b_{i} } + \sum\nolimits_{i = 1}^{k} {c_{i} } } \right)\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\mu_{i}^{M} } }}{{4\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|} }}\omega_{i} + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} \mu_{k + 1}^{M} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k} {a_{i} } + 2\sum\nolimits_{i = 1}^{k} {b_{i} } + \sum\nolimits_{i = 1}^{k} {c_{i} } } \right)\omega_{i} + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} }}, \frac{{\frac{{\left( {\sum\nolimits_{i = 1}^{k} {a_{i} } + 2\sum\nolimits_{i = 1}^{k} {b_{i} } + \sum\nolimits_{i = 1}^{k} {c_{i} } } \right)\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\mu_{i}^{R} } }}{{4\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|} }}\omega_{i} + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} \mu_{k + 1}^{R} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k} {a_{i} } + 2\sum\nolimits_{i = 1}^{k} {b_{i} } + \sum\nolimits_{i = 1}^{k} {c_{i} } } \right)\omega_{i} + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} }}\right] \right\rangle = \left\langle \left[\sum\limits_{i = 1}^{k + 1} {\omega_{i} a_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} b_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} c_{i} } \right];\left[\frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{L} } + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} \mu_{k + 1}^{L} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k} {\omega_{i} a_{i} } + \omega_{k + 1} a_{k + 1} + 2\sum\nolimits_{i = 1}^{k} {\omega_{i} b_{i} } + 2\omega_{k + 1} b_{k + 1} + \sum\nolimits_{i = 1}^{k} {\omega_{i} c_{i} } + \omega_{k + 1} c_{k + 1} } \right)}}, \frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{M} } + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} \mu_{k + 1}^{M} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k} {\omega_{i} a_{i} } + \omega_{k + 1} a_{k + 1} + 2\sum\nolimits_{i = 1}^{k} {\omega_{i} b_{i} } + 2\omega_{k + 1} b_{k + 1} + \sum\nolimits_{i = 1}^{k} {\omega_{i} c_{i} } + \omega_{k + 1} c_{k + 1} } \right)}}, \frac{{\sum\nolimits_{i = 1}^{k} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{R} } + \frac{1}{4}(a_{k + 1} + 2b_{k + 1} + c_{k + 1} )\omega_{k + 1} \mu_{k + 1}^{R} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k} {\omega_{i} a_{i} } + \omega_{k + 1} a_{k + 1} + 2\sum\nolimits_{i = 1}^{k} {\omega_{i} b_{i} } + 2\omega_{k + 1} b_{k + 1} + \sum\nolimits_{i = 1}^{k} {\omega_{i} c_{i} } + \omega_{k + 1} c_{k + 1} } \right)}}\right] \right\rangle = \left\langle \left[\sum\limits_{i = 1}^{k + 1} {\omega_{i} a_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} b_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} c_{i} } \right];\left[\frac{{\sum\nolimits_{i = 1}^{k} {\frac{{a_{i} + 2b_{i} + c_{i} }}{4}\omega_{i} \mu_{i}^{L} } + \frac{{a_{k + 1} + 2b_{k + 1} + c_{k + 1} }}{4}\omega_{k + 1} \mu_{k + 1}^{L} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} a_{i} } + 2\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} b_{i} } + \sum\nolimits_{i = 1}^{k + 1} {\omega_{i} c_{i} } } \right)}}, \frac{{\sum\nolimits_{i = 1}^{k} {\frac{{a_{i} + 2b_{i} + c_{i} }}{4}\omega_{i} \mu_{i}^{M} } + \frac{{a_{k + 1} + 2b_{k + 1} + c_{k + 1} }}{4}\omega_{k + 1} \mu_{k + 1}^{M} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} a_{i} } + 2\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} b_{i} } + \sum\nolimits_{i = 1}^{k + 1} {\omega_{i} c_{i} } } \right)}},\;\frac{{\sum\nolimits_{i = 1}^{k} {\frac{{a_{i} + 2b_{i} + c_{i} }}{4}\omega_{i} \mu_{i}^{R} } + \frac{{a_{k + 1} + 2b_{k + 1} + c_{k + 1} }}{4}\omega_{k + 1} \mu_{k + 1}^{R} }}{{\frac{1}{4}\left( {\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} a_{i} } + 2\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} b_{i} } + \sum\nolimits_{i = 1}^{k + 1} {\omega_{i} c_{i} } } \right)}}\right] \right\rangle = \left\langle {\left[ {\sum\limits_{i = 1}^{k + 1} {\omega_{i} a_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} b_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} c_{i} } } \right];\frac{{\sum\nolimits_{i = 1}^{k + 1} {\frac{{a_{i} + 2b_{i} + c_{i} }}{4}\omega_{i} \mu_{i}^{L} } }}{{\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} \left\| {\tilde{a}_{i} } \right\|} }},\frac{{\sum\nolimits_{i = 1}^{k + 1} {\frac{{a_{i} + 2b_{i} + c_{i} }}{4}\omega_{i} \mu_{i}^{M} } }}{{\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} \left\| {\tilde{a}_{i} } \right\|} }},\frac{{\sum\nolimits_{i = 1}^{k + 1} {\frac{{a_{i} + 2b_{i} + c_{i} }}{4}\omega_{i} \mu_{i}^{R} } }}{{\sum\nolimits_{i = 1}^{k + 1} {\omega_{i} \left\| {\tilde{a}_{i} } \right\|} }}} \right\rangle = \left\langle {\left[ {\sum\limits_{i = 1}^{k + 1} {\omega_{i} a_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} b_{i} } ,\sum\limits_{i = 1}^{k + 1} {\omega_{i} c_{i} } } \right];\left[ {\frac{{\sum\nolimits_{i = 1}^{k + 1} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{L} } }}{{\sum\nolimits_{i = 1}^{k + 1} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }},\frac{{\sum\nolimits_{i = 1}^{k + 1} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{M} } }}{{\sum\nolimits_{i = 1}^{k + 1} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }},\frac{{\sum\nolimits_{i = 1}^{k + 1} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} \mu_{i}^{R} } }}{{\sum\nolimits_{i = 1}^{k + 1} {\left\| {\tilde{a}_{i} } \right\|\omega_{i} } }}} \right]} \right\rangle.$$

i.e. equation (2) holds for \(n = k + 1\).

Therefore, based on (1) and (2), Eq. (2) holds for all \(n \in N\), which completes the proof.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Zq., Wang, Jq., Zhang, Hy. et al. Group Multi-criteria Decision Making Method with Triangular Type-2 Fuzzy Numbers. Int. J. Fuzzy Syst. 18, 673–684 (2016). https://doi.org/10.1007/s40815-015-0110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0110-8

Keywords

Navigation