Skip to main content
Log in

Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A type-2 fuzzy set, which is characterized by a fuzzy membership function, involves more uncertainties than the type-1 fuzzy set. As the most widely used type-2 fuzzy set, interval type-2 fuzzy set is a very useful tool to model the uncertainty in the process of decision making. As a special case of interval type-2 fuzzy set, trapezoidal interval type-2 fuzzy set can express linguistic assessments by transforming them into numerical variables objectively. The aim of this paper is to investigate the multiple attribute group decision-making problems in which the attribute values and the weights take the form of trapezoidal interval type-2 fuzzy sets. First, we introduce the concept of trapezoidal interval type-2 fuzzy sets and some arithmetic operations between them. Then, we develop several trapezoidal interval type-2 fuzzy aggregation operators for aggregating trapezoidal interval type-2 fuzzy sets and examine several useful properties of the developed operators. Furthermore, based on the proposed operators, we develop two approaches to multiple attribute group decision making with linguistic information. Finally, a practical example is given to illustrate the feasibility and effectiveness of the developed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen S-M, Lee L-W (2010) Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst Appl 37(4):2790–2798

    Article  Google Scholar 

  2. Wang WZ, Liu XW, Qin Y (2012) Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl Based Syst 30:121–128

    Article  Google Scholar 

  3. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  4. Chen SM (1988) A new approach to handling fuzzy decision-making problems. IEEE Trans Syst Man Cybern 18(6):1012–1016

    Article  MATH  Google Scholar 

  5. Chen CT (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9

    Article  MATH  Google Scholar 

  6. Chen SM (2001) Fuzzy group decision making for evaluating the rate of aggregative risk in software development. Fuzzy Sets Syst 118(1):75–88

    Article  MathSciNet  Google Scholar 

  7. Chen SJ, Hwang CL (1992) Fuzzy multiple attribute decision making: methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  8. Fu G (2008) A fuzzy optimization method for multicriteria decision making: an application to reservoir flood control operation. Expert Syst Appl 34(1):145–149

    Article  Google Scholar 

  9. Lin CJ, Wu WW (2008) A causal analytical method for group decision-making under fuzzy environment. Expert Syst Appl 34(1):205–213

    Article  Google Scholar 

  10. Ma J, Lu J, Zhang G (2010) Decider: a fuzzy multi-criteria group decision support system. Knowl Based Syst 23(1):23–31

    Article  Google Scholar 

  11. Noor-E-Alam M, Lipi TF, Hasin MAA, Ullah AMMS (2011) Algorithms for fuzzy multi expert multi criteria decision making (ME-MCDM). Knowl Based Syst 24(3):367–377

    Article  Google Scholar 

  12. Tsabadze T (2006) A method for fuzzy aggregation based on group expert evaluations. Fuzzy Sets Syst 157(10):1346–1361

    Article  MathSciNet  MATH  Google Scholar 

  13. Tsai MJ, Wang CS (2008) A computing coordination based fuzzy group decision-making (CC-FGDM) for web service oriented architecture. Expert Syst Appl 34(4):2921–2936

    Article  Google Scholar 

  14. Wang TC, Chang TH (2007) Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Syst Appl 33(4):870–880

    Article  Google Scholar 

  15. Wang J, Lin YI (2003) A fuzzy multicriteria group decision making approach to select configuration items for software development. Fuzzy Sets Syst 134(3):343–363

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang Y-M, Parkan C (2005) Multiple attribute decision making based on fuzzy preference information on alternatives: ranking and weighting. Fuzzy Sets Syst 153(3):331–346

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu Z, Chen Y (2007) The maximizing deviation method for group multiple attributedecision making under linguistic environment. Fuzzy Sets Syst 158(14):1608–1617

    Article  MATH  Google Scholar 

  18. Chen S-M, Lee L-W (2010) Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Syst Appl 37(1):824–833

    Article  MathSciNet  Google Scholar 

  19. Chen S-M, Yang M-W, Lee L-W, Yang S-W (2012) Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Syst Appl 39(5):5295–5308

    Article  Google Scholar 

  20. Mendel PJM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  21. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  22. Castro JR, Castillo O, Melin P, Díaz AR (2009) A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf Sci 179:2175–2193

    Article  MATH  Google Scholar 

  23. Jammeh EA, Fleury M, Wagner C, Hagras H, Ghanbari M (2009) Interval type-2 fuzzy logic congestion control for video streaming across IP networks. IEEE Trans Fuzzy Syst 17:1123–1142

    Article  Google Scholar 

  24. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8:535–550

    Article  Google Scholar 

  25. Mendel JM, Wu HW (2006) Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: part 1, forward problems. IEEE Trans Fuzzy Syst 14:781–792

    Article  Google Scholar 

  26. Mendel JM, Wu HW (2007) Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: part 2, inverse problems. IEEE Trans Fuzzy Syst 15:301–308

    Article  Google Scholar 

  27. Wu DR, Mendel JM (2008) A vector similarity measure for linguistic approximation: interval type-2 and type-1 fuzzy sets. Inf Sci 178:381–402

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu DR, Mendel JM (2009) A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf Sci 179:1169–1192

    Article  MathSciNet  Google Scholar 

  29. Andelkovic M, Saletic DZ (2012) A novel approach for generalizing weighted averages for trapezoidal interval type-2 fuzzy sets. In: IEEE 10th jubilee international symposium on intelligent systems and informatics (SISY), pp 165–170

  30. Castillo O, Melin P, Pedrycz W (2011) Design of interval type-2 fuzzy models through optimal granularity allocation. Appl Soft Comput 11(8):5590–5601

    Article  Google Scholar 

  31. Chen T-Y (2011) An integrated approach for assessing criterion importance with interval type-2 fuzzy sets and signed distances. J Chin Inst Ind Eng 28(8):553–572

    Google Scholar 

  32. Chen T-Y (2014) An ELECTRE-based outranking method for multiple criteria group decision making using interval type-2 fuzzy sets. Inf Sci 263:1–21

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen T-Y (2013) A linear assignment method for multiple-criteria decision analysis with interval type-2 fuzzy sets. Appl Soft Comput 13(5):2735–2748

    Article  Google Scholar 

  34. Chen T-Y (2013) An interactive method for multiple criteria group decision analysis based on interval type-2 fuzzy sets and its application to medical decision making. Fuzzy Optim Decis Making 12(3):323–356

    Article  MathSciNet  Google Scholar 

  35. Chen T-Y (2013) A signed-distance-based approach to importance assessment and multi-criteria group decision analysis based on interval type-2 fuzzy set. Knowl Inf Syst 35(1):193–231

    Article  Google Scholar 

  36. Chen T-Y (2014) A PROMETHEE-based outranking method for multiple criteria decision analysis with interval type-2 fuzzy sets. Soft Comput 18(5):923–940

    Article  MATH  Google Scholar 

  37. Chen T-Y, Chang C-H, Lu J-FR (2013) The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. Eur J Oper Res 226(3):615–625

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen S-M, Chen J-H (2009) Fuzzy risk analysis based on similarity measures between interval-valued fuzzy numbers and interval-valued fuzzy number arithmetic operators. Expert Syst Appl 36(3–2):6309–6317

    Article  Google Scholar 

  39. Chen S-M, Hong J-A (2014) Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets and the TOPSIS method. IEEE Trans Syst Man Cybern Syst. doi:10.1109/TSMC.2014.2314724

    Google Scholar 

  40. Chen S-M, Lee L-W, Shen VRL (2013) Weighted fuzzy interpolative reasoning systems based on interval type-2 fuzzy sets. Inf Sci 248:15–30

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen S-M, Wang C-Y (2013) Fuzzy decision making systems based on interval type-2 fuzzy sets. Inf Sci 242:1–21

    Article  MathSciNet  MATH  Google Scholar 

  42. Chiao K-P (2012) Trapezoidal interval type-2 fuzzy set extension of analytic hierarchy process. In: IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1–8

  43. Zamri N, Abdullah L (2013) A new linguistic variable in interval type-2 fuzzy entropy weight of a decision making method. Proc Comput Sci 24:42–53

    Article  Google Scholar 

  44. Ghorabaee MK, Amiri M, Sadaghiani JS, Goodarzi GH (2014) Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets. Int J Adv Manuf Technol 75(5–8):1115–1130

    Article  Google Scholar 

  45. Liu B, Shen Y, Chen X, Chen Y, Wang X (2014) A partial binary tree DEA–DA cyclic classification model for decision makers in complex multi-attribute largegroup interval-valued intuitionistic fuzzy decision-making problems. Inf Fusion 18(1):119–130

    Article  Google Scholar 

  46. Ngan S-C (2013) A type-2 linguistic set theory and its application to multi-criteria decision making. Comput Ind Eng 64(2):721–730

    Article  Google Scholar 

  47. Wang J-C, Tsao C-Y, Chen T-Y (2014) A likelihood-based QUALIFLEX method with interval type-2 fuzzy sets for multiple criteria decision analysis. Soft Comput 19(8):2225–2243

    Article  Google Scholar 

  48. Yu X, Xu Z (2013) Prioritized intuitionistic fuzzy aggregation operators. Inf Fusion 14(1):108–116

    Article  Google Scholar 

  49. Wu DR, Mendel JM (2007) Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. IEEE Trans Fuzzy Syst 15(6):1145–1161

    Article  Google Scholar 

  50. Wu DR, Mendel JM (2008) Corrections to “aggregation using the linguistic weighted average and interval type-2 fuzzy sets”. IEEE Trans Fuzzy Syst 16(6):1664–1666

    Article  Google Scholar 

  51. Lee LW, Chen SM (2008) Fuzzy multiple attributes group decision-making based on the extension of TOPSIS method and interval type-2 fuzzy sets. In: Proceedings of 2008 international conference on machine learning and cybernetics, vols 1–7. IEEE, New York, pp 3260–3265

  52. Chen S-M, Lee L-W (2010) Fuzzy multiple criteria hierarchical group decision making based on interval type-2 fuzzy sets. IEEE Trans Syst Man Cybern Part A Syst Hum 40(5):1120–1128

    Article  MathSciNet  Google Scholar 

  53. Wang W, Liu X (2011) Multi-attribute decision making models under interval type-2 fuzzy environment. In: IEEE international conference on fuzzy systems, pp 1179–1184

  54. Chan FTS, Kumar N (2007) Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega Int J Manag Sci 35(4):417–431

    Article  Google Scholar 

  55. Zhang Z, Zhang S (2012) A novel approach to multi attribute group decisionmaking based on trapezoidal interval type-2 fuzzy soft sets. Appl Math Model 37(7):4948–4971

    Article  Google Scholar 

  56. Zadeh L (1975) The concept of a linguistic variable and its application to approximate reasoning, Part 1. Inf Sci 8:199–249

    Article  MATH  Google Scholar 

  57. Chen S-M, Yang M-W, Lee L-W, Yang S-W (2012) Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Syst Appl 39:5295–5308

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referees for their valuable suggestions in improving this paper. This work is supported by the National Natural Science Foundation of China (Grant No. 61375075), the Natural Science Foundation of Hebei Province of China (Grant No. F2012201020) and the Scientific Research Project of Department of Education of Hebei Province of China (Grant No. QN2016235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Zhang.

Appendices

Appendix 1: type-2 fuzzy sets

A type-2 fuzzy set \(\tilde{A}\) in the universe of discourse X can be represented by a type-2 membership function \(\mu_{{\tilde{A}}}\), shown as follows [20, 21, 56]:

$$\tilde{A} = \left\{ {\left( {\left( {x,u} \right),\mu_{{\tilde{A}}} \left( {x,u} \right)} \right)\left| {\forall x \in X,\quad \forall u \in J_{x} \subseteq \left[ {0,1} \right]} \right.} \right\},$$

where \(0 \le \mu_{{\tilde{A}}} \left( {x,u} \right) \le 1\). The type-2 fuzzy set \(\tilde{A}\) also can be represented as follows:

$$\tilde{A} = \int_{x \in X} {\int_{{u \in J_{x} }} {{{\mu_{{\tilde{A}}} \left( {x,u} \right)} \mathord{\left/ {\vphantom {{\mu_{{\tilde{A}}} \left( {x,u} \right)} {\left( {x,u} \right)}}} \right. \kern-0pt} {\left( {x,u} \right)}}} } = \int_{x \in X} {{{\left[ {\int_{{u \in J_{x} }} {{{\mu_{{\tilde{A}}} \left( {x,u} \right)} \mathord{\left/ {\vphantom {{\mu_{{\tilde{A}}} \left( {x,u} \right)} u}} \right. \kern-0pt} u}} } \right]} \mathord{\left/ {\vphantom {{\left[ {\int_{{u \in J_{x} }} {{{\mu_{{\tilde{A}}} \left( {x,u} \right)} \mathord{\left/ {\vphantom {{\mu_{{\tilde{A}}} \left( {x,u} \right)} u}} \right. \kern-0pt} u}} } \right]} x}} \right. \kern-0pt} x}} ,$$

where x is the primary variable, J x  ⊆ [0, 1] is the primary membership of x, u is the secondary variable, and \(\int_{{u \in J_{x} }} {{{\mu_{{\tilde{A}}} \left( {x,u} \right)} \mathord{\left/ {\vphantom {{\mu_{{\tilde{A}}} \left( {x,u} \right)} u}} \right. \kern-0pt} u}}\) is the secondary membership function (MF) at x. ∫ denotes union among all admissible x and u. For discrete universe of discourse, ∫ is replaced by Σ.

Let \(\tilde{A}\) be a type-2 fuzzy set in the universe of discourse X represented by the type-2 membership function \(\mu_{{\tilde{A}}} \left( {x,u} \right)\). If all \(\mu_{{\tilde{A}}} \left( {x,u} \right) = 1\), then \(\tilde{A}\) is called an interval type-2 fuzzy set. An interval type-2 fuzzy set \(\tilde{A}\) can be regarded as a special case of a type-2 fuzzy set, shown as follows [21]:

$$\tilde{A} = \int_{x \in X} {\int_{{u \in J_{x} }} {{1 \mathord{\left/ {\vphantom {1 {\left( {x,u} \right)}}} \right. \kern-0pt} {\left( {x,u} \right)}}} } = \int_{x \in X} {{{\left[ {\int_{{u \in J_{x} }} {{1 \mathord{\left/ {\vphantom {1 u}} \right. \kern-0pt} u}} } \right]} \mathord{\left/ {\vphantom {{\left[ {\int_{{u \in J_{x} }} {{1 \mathord{\left/ {\vphantom {1 u}} \right. \kern-0pt} u}} } \right]} x}} \right. \kern-0pt} x}} ,$$

where x is the primary variable, J x  ⊆ [0, 1] is the primary membership of x, u is the secondary variable, and \(\int_{{u \in J_{x} }} {{1 \mathord{\left/ {\vphantom {1 u}} \right. \kern-0pt} u}}\) is the secondary membership function (MF) at x.

Uncertainty about an interval type-2 fuzzy set \(\tilde{A}\) is conveyed by the union of all of the primary memberships, which is called the footprint of uncertainty (FOU) of \(\tilde{A}\), i.e.,

$${\text{FOU}}\left( {\tilde{A}} \right) = \bigcup\nolimits_{x \in X} {J_{x} }$$

The upper membership function and lower membership function of \(\tilde{A}\) are two type-1 membership functions that bound the FOU. The upper membership function is associated with the upper bound of \({\text{FOU}}\left( {\tilde{A}} \right)\) and is denoted by \(\tilde{A}^{U}\), and the lower membership function is associated with the lower bound of \({\text{FOU}}\left( {\tilde{A}} \right)\) and is denoted by \(\tilde{A}^{L}\).

Let \(\tilde{A}\) be a trapezoidal type-1 fuzzy set, \(\tilde{A} = \left( {a_{1} ,a_{2} ,a_{3} ,a_{4} ;H_{1} \left( {\tilde{A}} \right),H_{2} \left( {\tilde{A}} \right)} \right)\), as shown in Fig. 3, where \(H_{1} \left( {\tilde{A}} \right)\) denotes the membership value of the element a 2, \(H_{2} \left( {\tilde{A}} \right)\) denotes the membership value of the element a 3, \(0 \le H_{1} \left( {\tilde{A}} \right) \le 1\) and \(0 \le H_{2} \left( {\tilde{A}} \right) \le 1\). If a 2 = a 3, then the trapezoidal type-1 fuzzy set \(\tilde{A}\) becomes a triangular type-1 fuzzy set.

Fig. 3
figure 3

A trapezoidal type-1 fuzzy set

Appendix 2: some operational laws and comparison law

The operation between the trapezoidal interval type-2 fuzzy sets \(\tilde{A}_{1} = \left( {\tilde{A}_{1}^{U} ,\tilde{A}_{1}^{L} } \right) = \left( {\left( {a_{11}^{U} ,a_{12}^{U} ,a_{13}^{U} ,a_{14}^{U} ;H_{1} \left( {\tilde{A}_{1}^{U} } \right),H_{2} \left( {\tilde{A}_{1}^{U} } \right)} \right),\quad \left( {a_{11}^{L} ,a_{12}^{L} ,a_{13}^{L} ,a_{14}^{L} ;H_{1} \left( {\tilde{A}_{1}^{L} } \right),H_{2} \left( {\tilde{A}_{1}^{L} } \right)} \right)} \right)\) and \(\tilde{A}_{2} = \left( {\tilde{A}_{2}^{U} ,\tilde{A}_{2}^{L} } \right) = \left( {\left( {a_{21}^{U} ,a_{22}^{U} ,a_{23}^{U} ,a_{24}^{U} ;H_{1} \left( {\tilde{A}_{2}^{U} } \right),H_{2} \left( {\tilde{A}_{2}^{U} } \right)} \right),\quad \left( {a_{21}^{L} ,a_{22}^{L} ,a_{23}^{L} ,a_{24}^{L} ;H_{1} \left( {\tilde{A}_{2}^{L} } \right),H_{2} \left( {\tilde{A}_{2}^{L} } \right)} \right)} \right)\) is defined as follows [1, 18, 19]:

1.

$$\begin{aligned} \tilde{A}_{1} \oplus \tilde{A}_{2} & = \left( {\tilde{A}_{1}^{U} ,\tilde{A}_{1}^{L} } \right) \oplus \left( {\tilde{A}_{2}^{U} ,\tilde{A}_{2}^{L} } \right) \\ & = \left( \begin{array}{l} \left( {a_{11}^{U} + a_{21}^{U} ,a_{12}^{U} + a_{22}^{U} ,a_{13}^{U} + a_{23}^{U} ,a_{14}^{U} + a_{24}^{U} ;\, \hbox{min} \left\{ {H_{1} \left( {\tilde{A}_{1}^{U} } \right),H_{1} \left( {\tilde{A}_{2}^{U} } \right)} \right\},\,\hbox{min} \left\{ {H_{2} \left( {\tilde{A}_{1}^{U} } \right),H_{2} \left( {\tilde{A}_{2}^{U} } \right)} \right\}} \right), \hfill \\ \left( {a_{11}^{L} + a_{21}^{L} ,a_{12}^{L} + a_{22}^{L} ,a_{13}^{L} + a_{23}^{L} ,a_{14}^{L} + a_{24}^{L} ;\,\hbox{min} \left\{ {H_{1} \left( {\tilde{A}_{1}^{L} } \right),H_{1} \left( {\tilde{A}_{2}^{L} } \right)} \right\},\,\hbox{min} \left\{ {H_{2} \left( {\tilde{A}_{1}^{L} } \right),H_{2} \left( {\tilde{A}_{2}^{L} } \right)} \right\}} \right) \hfill \\ \end{array}\right) \\ \end{aligned}$$

2.

$$\begin{aligned} \tilde{A}_{1} \otimes \tilde{A}_{2} & = \left( {\tilde{A}_{1}^{U} ,\tilde{A}_{1}^{L} } \right) \otimes \left( {\tilde{A}_{2}^{U} ,\tilde{A}_{2}^{L} } \right) \\ {\kern 1pt} & = \left( \begin{array}{l} \left( {a_{11}^{U} \times a_{21}^{U} ,a_{12}^{U} \times a_{22}^{U} ,a_{13}^{U} \times a_{23}^{U} ,a_{14}^{U} \times a_{24}^{U} ;\, \hbox{min} \left\{ {H_{1} \left( {\tilde{A}_{1}^{U} } \right),H_{1} \left( {\tilde{A}_{2}^{U} } \right)} \right\},\, \hbox{min} \left\{ {H_{2} \left( {\tilde{A}_{1}^{U} } \right),H_{2} \left( {\tilde{A}_{2}^{U} } \right)} \right\}} \right), \hfill \\ \left( {a_{11}^{L} \times a_{21}^{L} ,a_{12}^{L} \times a_{22}^{L} ,a_{13}^{L} \times a_{23}^{L} ,a_{14}^{L} \times a_{24}^{L} ;\, \hbox{min} \left\{ {H_{1} \left( {\tilde{A}_{1}^{L} } \right),H_{1} \left( {\tilde{A}_{2}^{L} } \right)} \right\},\, \hbox{min} \left\{ {H_{2} \left( {\tilde{A}_{1}^{L} } \right),H_{2} \left( {\tilde{A}_{2}^{L} } \right)} \right\}} \right) \hfill \\ \end{array}\right) \\ \end{aligned}$$

3.

$$k\tilde{A}_{1} = \left( {k\tilde{A}_{1}^{U} ,k\tilde{A}_{1}^{L} } \right) = \left( \begin{aligned} \left( {k \times a_{11}^{U} ,k \times a_{12}^{U} ,k \times a_{13}^{U} ,k \times a_{14}^{U} ;\,H_{1} \left( {\tilde{A}_{1}^{U} } \right),H_{2} \left( {\tilde{A}_{2}^{U} } \right)} \right), \hfill \\ \left( {k \times a_{11}^{L} ,k \times a_{12}^{L} ,k \times a_{13}^{L} ,k \times a_{14}^{L} ;\,H_{1} \left( {\tilde{A}_{1}^{L} } \right),H_{2} \left( {\tilde{A}_{2}^{L} } \right)} \right) \hfill \\ \end{aligned} \right),\quad {\text{where}}\quad k > 0$$

4.

$$\tilde{A}_{1}^{k} = \left( {\left( {\tilde{A}_{1}^{U} } \right)^{k} ,\left( {\tilde{A}_{1}^{L} } \right)^{k} } \right) = \left( \begin{aligned} \left( {\left( {a_{11}^{U} } \right)^{k} ,\left( {a_{12}^{U} } \right)^{k} ,\left( {a_{13}^{U} } \right)^{k} ,\left( {a_{14}^{U} } \right)^{k} ;\,H_{1} \left( {\tilde{A}_{1}^{U} } \right),H_{2} \left( {\tilde{A}_{1}^{U} } \right)} \right), \hfill \\ \left( {\left( {a_{11}^{L} } \right)^{k} ,\left( {a_{12}^{L} } \right)^{k} ,\left( {a_{13}^{L} } \right)^{k} ,\left( {a_{14}^{L} } \right)^{k} ;\,H_{1} \left( {\tilde{A}_{1}^{L} } \right),H_{2} \left( {\tilde{A}_{1}^{L} } \right)} \right) \hfill \\ \end{aligned} \right),\quad {\text{where}}\quad k > 0$$

Let \(\tilde{A} = \left( {\tilde{A}^{U} ,\tilde{A}^{L} } \right) = \left( {\left( {a_{1}^{U} ,a_{2}^{U} ,a_{3}^{U} ,a_{4}^{U} ;H_{1} \left( {\tilde{A}^{U} } \right),H_{2} \left( {\tilde{A}^{U} } \right)} \right),\left( {a_{1}^{L} ,a_{2}^{L} ,a_{3}^{L} ,a_{4}^{L} ;H_{1} \left( {\tilde{A}^{L} } \right),H_{2} \left( {\tilde{A}^{L} } \right)} \right)} \right)\) be a trapezoidal interval type-2 fuzzy set. Chen et al. [57] defined the ranking value \(RV\left( {\tilde{A}} \right)\) of \(\tilde{A}\) as follows:

$$\begin{aligned} {\text{RV}}\left( {\tilde{A}} \right) & = \left[ {\frac{{\left[ {\left( {a_{1}^{U} + K} \right) + \left( {a_{4}^{U} + K} \right)} \right]}}{2} + \frac{{\left( {H_{1} \left( {\tilde{A}^{U} } \right) + H_{2} \left( {\tilde{A}^{U} } \right) + H_{1} \left( {\tilde{A}^{L} } \right) + H_{2} \left( {\tilde{A}^{L} } \right)} \right)}}{4}} \right] \\ & \quad \times \frac{{\left[ {\left( {a_{1}^{U} + K} \right) + \left( {a_{2}^{U} + K} \right) + \left( {a_{3}^{U} + K} \right) + \left( {a_{4}^{U} + K} \right) + \left( {a_{1}^{L} + K} \right) + \left( {a_{2}^{L} + K} \right) + \left( {a_{3}^{L} + K} \right) + \left( {a_{4}^{L} + K} \right)} \right]}}{8} \\ \end{aligned}$$

where \(K = \left\{ {\begin{array}{*{20}l} 0 \hfill & {{\text{if}}\quad a_{1}^{U} \ge 0,} \hfill \\ {\left| {a_{1}^{U} } \right|,} \hfill & {{\text{if}}\quad a_{1}^{U} < 0.} \hfill \\ \end{array} } \right.\)

To rank any two trapezoidal interval type-2 fuzzy sets, Chen et al. [57] defined the following comparison laws: Let \(\tilde{A}\) and \(\tilde{B}\) be two trapezoidal interval type-2 fuzzy sets. If \({\text{RV}}\left( {\tilde{A}} \right) < {\text{RV}}\left( {\tilde{B}} \right)\), then we define \(\tilde{A} < \tilde{B}\). If \({\text{RV}}\left( {\tilde{A}} \right) = {\text{RV}}\left( {\tilde{B}} \right)\), then we define \(\tilde{A} = \tilde{B}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput & Applic 29, 1039–1054 (2018). https://doi.org/10.1007/s00521-016-2488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2488-0

Keywords

Navigation