Skip to main content

Advertisement

Log in

Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Both natural erosional dynamics and anthropogenic changes have intense effects on the land use/land cover (LULC) of the global earth. These LULC changes have a substantial impact on soil and water. This study focus on impacts of LULC changes on hydrological processes governing the Tons River Basin (TRB). Landsat satellite images based on seven land use classes which were defined for this basin are forest deciduous (FRSD), forest mixed (FRST), mixed crop (RWSW), barren land (BARN), hay (HAY), residential (URBN) and water body (WATR). The LULC (1985–2035) result showed an increase in URBN from 0.29 to 2.81% while the rate of change (RoC) for URBN was calculated to be 8.71%. A continuous reduction was seen in FRSD from 15.57 to 9.77% giving the RoC as − 0.37%. The FRST increased at the RoC of 1.95% from 0.6 to 1.77% while the mixed crop (RWSW) increased from 72.68 to 78.27% at the RoC of 0.77%. The other LULC classes showed similar results. The hydrologic impacts were analyzed by running SWAT for the LULC changes in order to predict the corresponding changes in the hydrologic process. In this consequence SWAT was run for five decades from 1985 to 1995, 1995–2005, 2005–2015 (before baseline scenario) and 2015–2025, 2025–2035 (after baseline scenario) assuming 2015 as a baseline scenario. Evaluation of the impact of LULC changes revealed that there was decrease in surface runoff, from 62.29 to 62.14% and lateral flow from 2.39 to 0.261% for the period of 2015 to 2035. The groundwater flow showed a slight increment from 37.42 to 37.62% while the total water yield increased from 774.74 to 776.74 mm. The simulated results for TRB showed that the hydrological processes in the watershed were minimally influenced by LULC changes. It was concluded that the basin’s LULC change was not pronounced and was minimally affected by natural and artificial changes. The hydrological changes were not correlated with LULC changes. It is recommended that in order to manage the water resources and to properly develop the entire catchment, a rational regulation policy for land use patterns is vitally important in order to assist stakeholders and policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Hydrosheds-Asia Digital Elevation Model (DEM), Global Rivers and Global Basins

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbaspour KC (2012) SWAT-CUP: SWAT calibration and uncertainty programs—a user manual. Swiss Federal Institute of Aquatic Science and Technology. (downloaded on August 2016)

  • Abbaspour KC (2015) SWAT-CUP: SWAT Calibration and Uncertainty Programs-A User Manual. http://swat.tamu.edu/software/swat-cup/.(downloaded on August 2016)

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine thur watershed using SWAT. J Hydrol 333(2–4):413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European hydrological system—systeme hydrologique Europeen, ‘‘SHE’’, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1–2):45–59. https://doi.org/10.1016/0022-1694(86)90114-9

    Article  Google Scholar 

  • Alamirew CD. 2006. Modeling of Hydrology and Soil Erosion in Upper Awash River Basin. University of Bonn, Institut für Städtebau, Bodenordnung und Kulturtechnik. Ph.D Thesis. p 233

  • Amin A, Singh SK (2012) Study of urban land use dynamics in Srinagar city using Geo-spatial approach. Bull Environ Sci Res 1:18–24

    Google Scholar 

  • Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL (2011) Soil and Water Assessment Tool Theoretical Documentation, Version 2009. Texas: Texas Water Resources Institute Technical Report No 365; 2011.(downloaded on May 2016)

  • Ashagrie AG, Laat PJM, De, Wit MJM, De, Tu M, Uhlenbrook S (2006) Detecting the influence of land use changes on discharges and floods in the Meuse River Basin—the predictive power of a ninety-year rainfall-runoff relation?. Hydrol Earth Syst Sci 691–701. https://doi.org/10.5194/hess-10-691-2006

  • Baker TJ, Miller SN (2013) Using the soil and water assessment tool (SWAT) to assess land use impact on water resources in an East African watershed. J Hydrol 486:100–111. https://doi.org/10.1016/j.jhydrol.2013.01.041

    Article  Google Scholar 

  • Barthel R, Reichenau TG, Krimly T (2012) Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resour Manag 26(7):1929–1951

    Article  Google Scholar 

  • Basommi G, Guan Q-F, Cheng D-d, Singh SK (2016) Dynamics of land use change in a mining area: a case study of Nadowli District, Ghana. J Mt Sci 13:633–642

    Article  Google Scholar 

  • Beven K, Binley A (1992) The Future of distributed models–model calibration & uncertainty prediction. Hydrol Process 6(3):279–298

    Article  Google Scholar 

  • Cao W, Bowden WB, Davie T, Fenemor A (2006) Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol Process 20(5):1057–1073. https://doi.org/10.1002/hyp.5933

    Article  Google Scholar 

  • Carpenter SR, Stanley EH, Zanden MJV (2011) State of the World’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99. https://doi.org/10.1146/annurev-environ-021810-094524

    Article  Google Scholar 

  • Charlton MB, Arnell NW (2011) Adapting to climate change impacts on water resources in England—an assessment of draft water resources management plans. Global Environ Chang 21(1):238–248. https://doi.org/10.1016/j.gloenvcha.2010.07.012

    Article  Google Scholar 

  • Chen Z, Chen Y, Li B (2013) Quantifying the effects of climate variability and human activities on runoff for Kaidu river basin in arid region of northwest China. Theor Appl Climatol 111(3–4):537–545

    Article  Google Scholar 

  • Chen Y, Li J, Xu H (2016) Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrol Earth Syst Sci 20(1):375–392. https://doi.org/10.5194/hess-20-375-2016

    Article  Google Scholar 

  • Choi W, Deal BM (2008) Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee river basin (USA). J Environ Manage 88:1119–1130. https://doi.org/10.1016/j.jenvman.2007.06.001

    Article  Google Scholar 

  • Conaghan K (2010) Assessing the Hydrologic Implications of Land Use Change for the Upper Neuse River Basin (M.S. Thesis, Nicholas School of the Environment, Duke University). Accessed on 2016

  • De Girolamo AM, Porto AL (2012) Land use scenario development as a tool for watershed management within the Rio Mannu Basin. Land Use Policy 29(3):691–701. https://doi.org/10.1016/j.landusepol.2011.11.005

    Article  Google Scholar 

  • Deng X, Shi Q, Zhang Q, Shi C, Yin F (2015) Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys Chem Earth Parts A/B/C 79–82:2–10. https://doi.org/10.1016/j.pce.2015.01.002

    Article  Google Scholar 

  • Döll P, Portmann FT, Döll P, Eisner S, Strzepek K, Jacobsen M, Boehlert B (2012) Assessment How is the impact of climate change on river flow regimes related to the impact on mean annual runoff ? A global-scale analysis. Environ Res Lett 7(1):1–11. https://doi.org/10.1088/1748-9326/7/1/014037

    Article  Google Scholar 

  • Du J, Qian L, Rui H, Zuo T, Zheng D, Xu Y, Xu C (2012) Assessing the effects ofurbanization on annual runoff and flood events using an integrated hydrologicalmodeling system for Qinhuai River basin, China. J Hydrol 464–465:127–139. https://doi.org/10.1016/j.jhydrol.2012.06.057

    Article  Google Scholar 

  • Eberhart RC, Kennedy JA (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE Service Center, Piscataway, NJ, Nagoya, Japan. https://doi.org/10.1109/MHS.1995.494215

  • Ejieji CJ, Amodu MF, Adeogun AG (2016) Prediction of Streamflow of Hadejia-Jama’are-Kamadugu-Yobe River Basin, North Eastern Nigeria, Using SWAT Model. Ethiop Environ Stud Manag 9(2): 209–219

  • Fan M, Shibata H (2015) Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecol Indic 50:79–89. https://doi.org/10.1016/j.ecolind.2014.11.003

    Article  Google Scholar 

  • Farley KA, Tague C, Grant GE (2011) Vulnerability of water supply from the Oregon Cascades to changing climate: linking science to users and policy. Global Environ Chang 21(1):110–122. https://doi.org/10.1016/j.gloenvcha.2010.09.011

    Article  Google Scholar 

  • Feldman AD (1981) HEC models for water resources system simulation: theory and experience. Adv Hydrosci 12:297–423. https://doi.org/10.1016/B978-0-12-021812-7.50010-9

    Article  Google Scholar 

  • Foley JA et al (2005) Global consequences of land use. Science 309:570–574

    Article  Google Scholar 

  • Gajbhiye S, Singh SK, Sharma SK (2015) Assessing the effects of different land use on water qualify using multi-temporal Landsat data. In: Siddiqui AR SP (ed) Resour Manag Dev Strateg A Geogr Perspect. Pravalika Publications, Allahabad, pp 337–348

    Google Scholar 

  • García-ruiz JM, López-moreno JI, Vicente-serrano SM, Lasanta T, Beguería S (2011) Earth-science reviews Mediterranean water resources in a global change scenario. Earth Sci Rev 105(3–4):121–139. https://doi.org/10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  • Garg KK, Karlberg L, Barron J, Wani SP, Rockstrom J (2012) Assessing impacts of agricultural water interventions in the Kothapally watershed, Southern India. Hydrol Process 26(3):387–404. https://doi.org/10.1002/hyp.8138

    Article  Google Scholar 

  • Garg KK, Wani SP, Barron J, Karlberg L, Rockstrom J (2013) Up-scaling potential impacts on water fl ows from agricultural water interventions: opportunities and trade-offs in the Osman. Hydrol Process 27(26):3905–3921. https://doi.org/10.1002/hyp.9516

    Article  Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250

    Article  Google Scholar 

  • Gebremicael TG, Mohamed YA, Betrie GD, Zaag P, Van Der Teferi E (2013) Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J Hydrol 482:57–68. https://doi.org/10.1016/j.jhydrol.2012.12.023

    Article  Google Scholar 

  • Genxu W, Yu Z, Guimin L, Lin C (2005) Impact of land-use change on hydrological processes in the Maying River basin, China. Sci China Ser D Earth Sci 2006 49(10):1098–1110. https://doi.org/10.1007/s11430-006-1098-6

    Google Scholar 

  • Getahun YS, Van Lanen HAJ (2015) Assessing the Impacts of land use-cover change on hydrology of Melka Kuntrie Subbasin in Ethiopia, using a conceptual hydrological model. Hydrol Current Res 6:210. https://doi.org/10.4172/2157-7587.1000210

    Article  Google Scholar 

  • Ghaffari G, Keesstra S, Ghodousi J, Ahmadi H (2010) SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrol Process 24(7):892–903. https://doi.org/10.1002/hyp.7530

    Article  Google Scholar 

  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2017a) Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Model Earth Syst Environ. https://doi.org/10.1007/s40808-017-0397-6

    Google Scholar 

  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2017b) Modeling the Spatio-temporal dynamics and evolution of land use and land cover (1984–2015) using remote sensing and GIS in Raya, Northern Ethiopia. Model Earth Syst Environ. https://doi.org/10.1007/s40808-017-0375-z

    Google Scholar 

  • Gosain AK, Rao S, Srinivasan R, Reddy NG (2005) Return-flow assessment for irrigation command in the Palleru river basin using SWAT model. Hydrol Process 19(3):673–682. https://doi.org/10.1002/hyp.5622

    Article  Google Scholar 

  • Gosain AK, Rao S, Basuray D (2006) Climate change impact assessment on hydrology of Indian river basins. Curr Sci 101(3):356–371

    Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4:135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)

    Article  Google Scholar 

  • Gyamfi C, Ndambuki JM, Anornu GK, Kifanyi GE (2017) Groundwater recharge modelling in a large scale basin: an example using the SWAT hydrologic model. Model Earth Syst Environ. https://doi.org/10.1007/s40808-017-0383-z

    Google Scholar 

  • Haregeweyn N, Berhe A, Tsunekawa A, Tsubo M, Meshesha DT (2012) Integrated watershed management as an effective approach to curb land degradation: a case study of the enabered watershed in Northern Ethiopia. Environ Manage 50(6):1219–1233

    Article  Google Scholar 

  • He M, Hogue TS (2012) Integrating hydrologic modeling and land use projections for evaluation of hydrologic response and regional water supply impacts in semi-arid environments. Environ Earth Sci 65(6):1671–1685

    Article  Google Scholar 

  • Hornberger GM, Spear RC (1981) An approach to the preliminary-analysis of environmental systems. J Environ Manage 12(1):7–18

    Google Scholar 

  • Hu X, Lu L, Li X, Wang J, Guo M (2015) Land use/cover change in the middle reaches of the Heihe River Basin over 2000–2011 and its implications for sustainable water resource management. PLoS One 10(6):1–19. https://doi.org/10.1371/journal.pone.0128960

    Google Scholar 

  • Huber WC, Dickinson RE, Barnwell TO Jr (1988) Storm water management model, version 4: User’s manual, 600/3–88/001a. US Environmental Protection Agency. Report No. EPA/, Athens

  • Isik S, Kalin L, Schoonover JE, Srivastava P, Lockaby BG (2012) Modeling effects of changing land use / cover on daily streamflow: An Artificial Neural Network and curve number based hybrid approach. J Hydrol 485:103–112. https://doi.org/10.1016/j.jhydrol.2012.08.032

    Article  Google Scholar 

  • Jing Z, Ross M (2015) Hydrologic modeling impacts of post-mining land use changes on streamflow of Peace River, Florida. Chin Geogr Sci 25(6):728–738

    Article  Google Scholar 

  • Kishor B, Singh SK (2014) Change detection mapping of land use land cover using multidate satellite data. Int J Eng Res Techno 3:2320–2326

    Google Scholar 

  • Kristian J, Christian J, Mazvimavi D (1998) Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: Case studies from Zimbabwe. J Hydrol 205(3–4):147–163. https://doi.org/10.1016/S0168-1176(97)00311-9

    Google Scholar 

  • Krysanova V, White M, Krysanova V, White M (2015) Advances in water resources assessment with SWAT—an overview. Hydrol Sci J 60:771–783. https://doi.org/10.1080/02626667.2015.1029482

    Google Scholar 

  • Kumar SK, Aier B, Khanduri VP, Gautam P, Singh D, Singh SK (2013) Assessment of soil nutrients (N, P, K) status along with tree diversity In different land use systems at Mokokchung. Nagaland India Sci Technol J 1:42–48

    Google Scholar 

  • Kumar S, Yadava RN, Singh SK (2014) Assessment of land use around highly populous business centre of Lucknow City using GIS techniques and high resolution Google Earth’s Quickbird satellite data. Bull Environ Sci Res 3:8–14

    Google Scholar 

  • Kumar N, Singh SK, Srivastava PK, Narsimlu B (2017) SWAT model calibration and uncertainty analysis for streamflow prediction of the Tons river basin, India, using sequential uncertainty fitting (SUFI-2) algorithm. Model Earth Syst Environ. https://doi.org/10.1007/s40808-017-0306-z

    Google Scholar 

  • Lamine S, Petropoulos GP, Singh SK, Szabó S, Bachari NEI, Srivastava PK, Suman S (2017) Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS®. Geocarto Int 6049:1–17

    Article  Google Scholar 

  • Legesse D, Vallet-couomb C, Gasse F (1995) Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. J Hydrol 275(1–2):67–85. https://doi.org/10.1016/S0022-1694(03)00019-2

    Google Scholar 

  • Li Y, Wang C (2009) Impacts of Urbanization on Surface Runoff of the Dardenne Creek Watershed, St. Charles County, Missouri. Phys Geogr 30(6):556–573

    Article  Google Scholar 

  • Li Z, Liu W, Zhang X, Zheng F (2009) Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J Hydrol 377(1–2):35–42. https://doi.org/10.1016/j.jhydrol.2009.08.007

    Article  Google Scholar 

  • Lin YP, Verburg PH, Chang CR, Chen HY, Chen MN (2009) Developing and comparing optimal and empirical land-use models for the development of an urbanized watershed forest in Taiwan. Landsc Urban Plan 92(3–4):242–254. https://doi.org/10.1016/j.landurbplan.2009.05.003

    Article  Google Scholar 

  • Ma X, Xu J, Luo Y, Aggarwal SP, Li J (2009a) Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China. Hydrol Process 23(8):1179–1191. https://doi.org/10.1002/hyp.7233

    Article  Google Scholar 

  • Ma X, Xu J, Luo Y, Aggarwal SP, Li J (2009b) Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China. Hydrol Process. https://doi.org/10.1002/hyp.7233

    Google Scholar 

  • Maetens W, Vanmaercke M, Poesen J, Jankauskas B, Jankauskiene G, Ionita I (2012) Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: a meta-analysis of plot data. Prog Phys Geogr 36:597–651

    Article  Google Scholar 

  • Makwana JJ, Tiwari MK (2017) Hydrological stream flow modelling using soil and water assessment tool (SWAT) and neural networks (NNs) for the Limkheda watershed, Gujarat, India M.K. Model Earth Syst Environ 3:635. https://doi.org/10.1007/s40808-017-0323-y

    Article  Google Scholar 

  • Mango LM, Melesse AM, Mcclain ME, Gann D, Setegn SG (2011) Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management. Hydrol Earth Syst Sci 15:2245–2258. https://doi.org/10.5194/hess-15-2245-2011

    Article  Google Scholar 

  • Marhaento H, Booij MJ, Rientjes THM, Hoekstra AY (2016) Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol Process 2017:1–12. https://doi.org/10.1002/hyp.11167

    Google Scholar 

  • Metzger JC, Landschreiber L, Gröngröft A, Eschenbach A (2014) Soil evaporation under different types of land use in southern African savanna ecosystems. J Plant Nutr Soil Sci 177(3):468–475. https://doi.org/10.1002/jpln.201300257

    Article  Google Scholar 

  • Molina-navarro E, Trolle D, Martínez-pérez S, Sastre-merlín A, Jeppesen E (2014) Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. J Hydrol 509:354–366. https://doi.org/10.1016/j.jhydrol.2013.11.053

    Article  Google Scholar 

  • Morán-tejeda E, Ceballos-barbancho A, Llorente-pinto JM (2010) Hydrological response of Mediterranean headwaters to climate oscillations and land-cover changes: the mountains of Duero River basin (Central Spain). Global Planet Change 72:39–49. https://doi.org/10.1016/j.gloplacha.2010.03.003

    Article  Google Scholar 

  • Morán-tejeda E, Zabalza J, Rahman K, Gago-silva A, López-moreno JI, Vicente-serrano S, Lehmann A, Tague CL, Beniston M (2015) Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology 8(8):1396–1416. https://doi.org/10.1002/eco.1590

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASABE 58(6):1763–1785. https://doi.org/10.13031/trans.58.10715

    Article  Google Scholar 

  • Murty PS, Pandey A, Suryavanshi S (2014) Application of Semi distributed hydrological model for basin level water balance of the Ken basin of Central India. Hydrol Process 28(13):4119–4129. https://doi.org/10.1002/hyp.9950

    Article  Google Scholar 

  • Mustak SK, Baghmar NK, Singh SK (2015) Prediction of industrial land use using linear regression and MOLA techniques: a case study of Siltara industrial belt. Landsc Environ 9:59–70

    Article  Google Scholar 

  • Mustak SK, Baghmar NK, Singh SK (2016) Land suitability modeling for arhar pulse through analytic hierarchy process using remote sensing and GIS: a case study of Seonath Basin. Bull Environ Sci Res 4:6–17

    Google Scholar 

  • Nash JE, Sutcliffe J (1970) River flow forecasting through conceptual models: part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and Water Assessment Tool Theoretical Documentation. Ver. 2005. Temple, Tex., USDA–ARS Grassland Soil and Water. Research Laboratory, and Texas A&M University, Blackland Research and Extension Center, 2005

  • Niraula R, Meixner T, Norman LM (2015) Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes. J Hydrol 522:439–451. https://doi.org/10.1016/j.jhydrol.2015.01.007

    Article  Google Scholar 

  • Niu J, Sivakumar B (2014) Study of runoff response to land use change in the East River basin in South China. Stoch Env Res Risk Assess 28(4):857–865

    Article  Google Scholar 

  • Nugroho P, Marsono D, Sudira P, Suryatmojo H (2013) Impact of land-use changes on water balance. Proced Environ Sci 17:256–262

    Article  Google Scholar 

  • Nyssen J, Clymans W, Descheemaeker K, Poesen J, Vandecasteele I et al (2010) Impact of soil and water conservation measures on catchment hydrological response–a case in north Ethiopia. Hydrol Process 24(13):78–87. https://doi.org/10.1002/hyp.7628

    Article  Google Scholar 

  • Olang LO (2011) Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin, Kenya. Hydrol Process 25(1):80–89. https://doi.org/10.1002/hyp.7821

    Article  Google Scholar 

  • Perrin J (2014) Assessing water availability in a semi-arid watershed of southern India using a semi-distributed model. J Hydrol 460–461:143–155. https://doi.org/10.1016/j.jhydrol.2012.07.002

    Google Scholar 

  • Poff NL, Zimmerman JKH (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biol 55(1):194–205. https://doi.org/10.1111/j.1365-2427.2009.0227

    Article  Google Scholar 

  • Portela R, Rademacher I (2001) A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecol Model 143(1–2):115–146

    Article  Google Scholar 

  • Prasad BKV (2012) Water for sustainable water resources management in watershed for sustainable water resources management in watershed

  • Rolls RJ, Catherine Leigh C, Sheldon F (2012) Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Sci 31(4):1163–1186

    Article  Google Scholar 

  • Santhi C, Arnold JG. Williams JR. Dugas WA, Srinivasan R. Hauck LM (2001a) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resou Assoc 37(5):1169–1188

    Article  Google Scholar 

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001b) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37:1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x

    Article  Google Scholar 

  • Santra P, Das SB (2013) Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT. J Hydro-Environ Res 7(4):261–269. https://doi.org/10.1016/j.jher.2013.04.005

    Article  Google Scholar 

  • Singh A, Imtiyaz M (2012) Application of process based hydrological model for simulating stream flow in an agricultural water shed of India. In: India Water Week 2012—Water Energy and Food Security Call for Solutions, New Delhi, India

  • Singh SK, Singh CK, Mukherjee S (2010) Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. Cent Eur J Geosci 2:124–131

    Google Scholar 

  • Singh SK, Kumar KS, Aier B, Kanduri VP, Ahirwar S (2012) Plant community characteristics and soil status in different land use systems in Dimapur district, Nagaland, India. For Res Pap 73:305–312

    Google Scholar 

  • Singh SK, Srivastava K, Gupta M, Thakur K, Mukherjee S (2014) Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ Earth Sci 71:2245–2255

    Article  Google Scholar 

  • Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata markov chain models using earth observation datasets and geo-information. Environ Process 2(1):61–78

    Article  Google Scholar 

  • Singh SK, Srivastava PK, Szabó S, Petropoulos GP, Gupta M, Islam T (2017a) Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using earth observation data-sets. Geocarto Int 32(2):113–127. https://doi.org/10.1080/10106049.2015.1130084

    Google Scholar 

  • Singh SK, Basommi BP, Mustak SK, Srivastava PK, Szabo S (2017b) Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. https://doi.org/10.1080/10106049.2017.1343390

    Google Scholar 

  • Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrological modeling and assessment part II: model application. J Am Water Resou Assoc 34:91–101.https://doi.org/10.1111/j.1752-1688.tb05962.x

    Article  Google Scholar 

  • Srinivasan R, Zhang X, Arnold J (2010) SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin. T ASABE 53(5):1533–1546

    Article  Google Scholar 

  • Sterling SM, Ducharne A, Polcher J (2012) The impact of global land-cover change on the terrestrial water cycle. Nat Cli Change:385–390. https://doi.org/10.1038/nclimate1690

  • Suliman AHA, Jajarmizadeh M, Harun S, Zaurah I, Darus M (2015) Comparison of semi-distributed, GIS-based hydrological models for the prediction of streamflow in a large catchment. Water Resour Manag 29(9):3095–3110

    Article  Google Scholar 

  • Tripathi MP, Raghuwanshi NS, Rao GP (2006) Effect of watershed subdivision on simulation of water. Hydrol Process 20(5):1137–1156. https://doi.org/10.1002/hyp.5927

    Article  Google Scholar 

  • US Department of Agriculture (USDA) (2011) AGNPS. Retrieved October 24, 2010 from http://www.ars.usda.gov/research/ docs.htm?docid = 5199

  • Verburg PH, Veldkamp A, Bouma J (1999) Land-use change under conditions of high population pressure: the case of Java. Glob Environ Change 9(4):303–312

    Article  Google Scholar 

  • Vilaysane B, Takara K, Luo P, Akkharath I (2015) Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Proced Environ Sci 28:380–390. https://doi.org/10.1016/j.proenv.2015.07.047

    Article  Google Scholar 

  • Wang S, Kang S, Zhang L, Li F (2008) Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrol Process 22(14):2502–2510

    Article  Google Scholar 

  • Wang G, Yang H, Wang L, Xu Z, Xue B (2014) Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters. Hydrol Process 28(3):1032–1042. https://doi.org/10.1002/hyp.9645

    Article  Google Scholar 

  • Webb BW, Clack PD, Walling DE (2003) Water-air temperature relationships in a Devon river system and the role of flow. Hydrol Process 17:3069–3084

    Article  Google Scholar 

  • Welde K, Gebremariam B (2017) Effect of land use land cover dynamics on hydrological response of watershed: case study of Tekeze dam watershed, northern Ethiopia. Int Soil Water Conserv Res 5(2017):1–16. https://doi.org/10.1016/j.iswcr.2017.03.002

    Article  Google Scholar 

  • Wijesekara GN, Gupta A, Valeo C, Hasbani J, Qiao Y, Delaney P, Marceau DJ (2012) Assessing the impact of future land-use changes on hydrological processes in the Elbow river watershed in southern Alberta, Canada. J Hydrol 412–413:220–232. https://doi.org/10.1016/j.jhydrol.2011.04.018

    Article  Google Scholar 

  • Woldesenbet TA, Elagib NA, Ribbe L, Heinrich J (2017) Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci Total Environ 575(2017):724–741. https://doi.org/10.1016/j.scitotenv.2016.09.124

    Article  Google Scholar 

  • Yan B, Fang NF, Zhang PC, Shi ZH (2013) Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J Hydrol 484:26–37. https://doi.org/10.1016/j.jhydrol.2013.01.008

    Article  Google Scholar 

  • Yang XL, Ren LL, Singh VP et al (2012) Impacts of land use and land cover changes on evapotranspiration and runoff at Shalamulun River watershed, China. Hydrol Res 43(1–2):23–37. https://doi.org/10.2166/nh.2011.120

    Article  Google Scholar 

  • Ye X, Zhang Q, Liu J, Li X, Xu C (2013) Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment. J Hydrol 494:83–95. https://doi.org/10.1016/j.jhydrol.2013.04.036

    Article  Google Scholar 

  • Young RA, Onstad C, Bosch D, Anderson W (1989) AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. J Soil Water Cons 44:168–173

    Google Scholar 

  • Yu W, Zang S, Wu C, Liu W, Na X (2011) Analyzing and modeling land use land cover change (LUCC) in the Daqing. Appl Geogr 31:600–608. https://doi.org/10.1016/j.apgeog.2010.11.019

    Article  Google Scholar 

  • Zhang YK, Schilling KE (2006) Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J Hydrol 324(1–4):412–422. https://doi.org/10.1016/j.jhydrol.2005.09.033

    Article  Google Scholar 

  • Zhang C, Zhang B, Li W, Liu M (2014) Response of stream fl ow to climate change and human activity in Xitiaoxi river basin in China. Hydrol Process 28(1):43–50

    Article  Google Scholar 

  • Zhou H, Xiong D, Yang Z (2008) Effects of land use change on ecosystem service value in Yuanmou dry-hot valley. Trans Chin Soc Agric Eng 24(3):135–138

    Google Scholar 

  • Zhou F, Xu Y, Chen Y, Xu C, Gao Y, Du J (2013) Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J Hydrol 485:113–125. https://doi.org/10.1016/j.jhydrol.2012.12.040

    Article  Google Scholar 

  • ISWSCR2004-08.pdf. Accessed 8 Sept 2005

Download references

Acknowledgements

The corresponding author is thankful to University Grant Commission (UGC), New Delhi, India for sponsoring major research project (MRP) [Grant No. 42–74/2013 (SR)] to carry out this research work. Authors also express their sincere thanks to Prof. R Srinivasan, Departments of Ecosystem Sciences and Management and Biological and Agricultural Engineering at Texas A&M University. Dr. Srinivasan is one of the developers of Soil and Water Assessment Tool (SWAT) for his constructive remarks on the first draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Singh, S.K., Singh, V.G. et al. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Model. Earth Syst. Environ. 4, 295–310 (2018). https://doi.org/10.1007/s40808-018-0425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0425-1

Keywords

Navigation