Skip to main content

Advertisement

Log in

Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The GLOWA-Danube research cooperation has developed the integrated simulation system DANUBIA to simulate water-related influences of global change in different spatial and temporal contexts. DANUBIA is a modular system comprised of 17 dynamically-coupled, process-based model components and a framework which controls the interaction of these components with respect to space and time. This article describes approaches and capabilities of DANUBIA with regard to the simulation of global change effects on agriculture and groundwater. To the agriculture-groundwater-relation, the direct effects that climate change has on the water balance are just as important as decisions made by land managers about land use and farming intensity. This article provides firstly a brief review of the research efforts which have been undertaken in the field of integrated modeling of agriculture and groundwater under conditions of global change. Then, the DANUBIA simulation framework and the associated DeepActor-framework for simulation of decision-making by agricultural actors are presented together with the model components which are most relevant to the interactions between agriculture and groundwater. The approach for developing combination climate and socio-economic scenarios is explained. Exemplary scenario results are shown for the Upper Danube Catchment in Southern Germany. Finally issues related to integrated simulation of global change effects on agriculture and groundwater are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahrends H, Mast M, Rodgers Ch, Kunstmann H (2008) Coupled hydrological economic modelling for optimised irrigated cultivation in a semi-arid catchment of West Africa. Environmental Modelling & Software 23:385–395

    Article  Google Scholar 

  • Ali MH, Abustan I, Rahman MA, Haque AAM (2011) Sustainability of groundwater resources in the north-eastern region of Bangladesh. Water Resour Manag. Article in Press. doi:10.1007/s11269-011-9936-5

  • Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological setting. EPA/600/2-87/035. US Env. Protection Agency p. 163

  • Amt für Ernährung, Landwirtschaft und Forsten Kaufbeuren (2009) Daten und Fakten, Unser Dienstgebiet, Natürliche Standortverhältnisse. http://www.aelf-kf.bayern.de/daten_fakten/15600/index.php

  • Amt für Ernährung, Landwirtschaft und Forsten Krumbach (Schwaben) (2009) Daten und Fakten, Unser Dienstgebiet, Natürliche Standortverhältnisse. http://www.aelf-kr.bayern.de/daten_fakten/22480/index.php

  • Apfelbeck J, Huigen M, Krimly T (2007) The importance of spatial, temporal and social scales in integrated modeling; simulating the effects of climate change on district- and farm-level decision making in the Danube catchment area. Presented at The Agricultural Economics Society’s 81st Annual Conference, University of Reading, UK, 2nd to 4th April 2007. http://agecon.lib.umn.edu/cgi-bin/view.pl

  • Arnell N (1998) Climate change and water resources in Britain. Climatic Change 39:83–110

    Article  Google Scholar 

  • Aulinas M, Turon C, Sànchez-Marrè M (2009) Agents as a decision support tool in environmental processes: the state of the art. Whitestein Series in Software Agent Technologies and Autonomic Computing 5–35

  • Barth M, Hennicker R, Kraus A, Ludwig M (2004) DANUBIA: an integrative simulation system for global research in the Upper Danube Basin. Cybernetics and Systems 35(7–8):639–666

    Article  Google Scholar 

  • Barth JAC et al (2009) Mobility, turnover and storage of pollutants in soils, sediments and waters: achievements and results of the EU project AquaTerra. A review. Agron Sustain Dev 29(1):161–173

    Article  Google Scholar 

  • Barthel R (2006) Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale. Advances in Geosciences 9:63–71

    Article  Google Scholar 

  • Barthel R (2011) An indicator approach to assessing and predicting the quantitative state of groundwater bodies on the river basin scale with a special focus on the impacts of climate change. Hydrogeol J, in print. doi:10.1007/s10040-010-0693-y

  • Barthel R, Nickel D, Meleg A, Trifkovic A, Braun J (2005a) Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Physics and Chemistry of the Earth 30(6–7):389–397

    Google Scholar 

  • Barthel R, Rojanschi V, Wolf J, Braun J (2005b) Large-scale water resources management within the framework of GLOWA-Danube. Part A: The groundwater model. Physics and Chemistry of the Earth 30(6–7):372–382

    Google Scholar 

  • Barthel R, Janisch S, Schwarz N, Trifkovic A, Nickel D, Schulz C, Mauser W (2008a) An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling and Software 23:1095–1121. doi:10.1016/j.envsoft.2008.02.004

    Article  Google Scholar 

  • Barthel R, Mauser W, Braun J (2008b) Integrated modelling of global change effects on the water cycle in the UDC (Germany)—the groundwater management perspective. In: Carillo J J Ortega M A (eds) Groundwater flow understanding from local to regional scale, International Association of Hydrogeologists. Selected Papers on Hydrogeology (12):47–72

  • Barthel R, Janisch S, Nickel D, Trifkovic A (2010) Using the multiactor-approach in GLOWA-Danube to simulate decisions for the water supply sector under conditions of global climate change. Water Resources Management 24:239–275

    Article  Google Scholar 

  • Barthel R, Reichenau T, Mürth M, Haag I, Schneider K, Hennicker R, Mauser W (2011a) Folgen des Globalen Wandels für das Grundwasser in Süddeutschland - Teil 1: Naturräumliche Aspekte: Grundwasser, Band 16, Heft 4(2011):247–257

  • Barthel R, Krimly T, Elbers M, Soboll A, Wackerbauer J, Hennicker R, Janisch S, Reichenau TG, Dabbert S, Schmude J, Ernst A, Mauser W (2011b) Folgen des Globalen Wandels für das Grundwasser in Süddeutschland - Teil 2: Sozioökonomische Aspekte. Grundwasser, Band 16, Heft 4 (2011):259–268

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (Eds) (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp. 210 (http://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf)

  • Bayrisches Staatsministerium für Landwirtschaft und Forsten (2004) GAP-Reform 2005 Europäische Agrarreform 2005 Nationale Umsetzung. 80535 München

  • Berkhoff K (2008) Spatially explicit groundwater vulnerability assessment to support the implementation of the Water Framework Directive—a practical approach with stakeholders. Hydrol Earth Syst Sci 12:111–122

    Article  Google Scholar 

  • Bithell M, Brasington J (2009) Coupling agent-based models of subsistence farming with individual-based forest models and dynamic models of water distribution. Environmental Modelling & Software 24:173–190

    Article  Google Scholar 

  • BLSD (Bayerisches Landesamt für Statistik und Datenverarbeitung) (2007) Agrarstrukturerhebung, Betriebstypen, betriebswirtschaftliche Ausrichtung, Anzahl der landwirtschaftlichen Betriebe, Stand: 19.06.2009

  • BMELV (Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz) (2006), Die EU-Agrarreform – Umsetzung in Deutschland; 11055 Berlin

  • Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeology Journal 10:153–179

    Article  Google Scholar 

  • Bormann H (2010) Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Climatic Change. doi:10.1007/s10584-010-9869-7

  • Bovolo CI, Parkin G, Sophocleous M (2009) Groundwater resources, climate, and vulnerability. Environ Res Lett 4:035001

    Article  Google Scholar 

  • Bulatewicz T, Yang X, Peterson JM, Staggenborg S, Welch SM, Steward DR (2010) Accessible integration of agriculture, groundwater, and economic models using the Open Modeling Interface (OpenMI): methodology and initial results. Hydrol Earth Syst Sci 14:521–534

    Article  Google Scholar 

  • Butscher P, Huggenberger C (2009) Modeling the temporal variability of karst groundwater vulnerability, with implications for climate change. Environmental Science and Technology 43(6):1665–1669

    Article  Google Scholar 

  • Cao W, Bowden WB, Davie T, Fenemor A (2011) Modelling impacts of land cover change on critical water resources in the Motueka River Catchment, New Zealand. Water Resources Management 23(1):137–151

    Article  Google Scholar 

  • Carmona G, Varela-Ortega C, Bromley J (2011) The use of participatory object-oriented bayesian networks and agro-economic models for groundwater management in Spain. Water Resources Management 25(5):1509–1524

    Article  Google Scholar 

  • Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2010) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18:1639–1656

    Article  Google Scholar 

  • Danielopol D, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environmental Conservation 30(2):104–130

    Article  Google Scholar 

  • Destouni G, Darracq A (2009) Nutrient cycling and N2O emissions in a changing climate: the subsurface water system role. Environ Res Lett 4(2009) 035008 (pp 7)

    Google Scholar 

  • Dragoni W, Sukhija BS (2008) Climate change and groundwater: a short review. Geological Society, London, Special Publications 288:1–12. doi:10.1144/SP288.1

    Article  Google Scholar 

  • Eagleson PS (1978) Climate, soil, and vegetation, 3. A simplified model of soil water movement in the liquid phase. Water Resources Research 14:722–730

    Article  Google Scholar 

  • Easterling W (1996) Adapting North American agriculture to climate change in review. Agricultural and Forest Meteorology 80:1–53

    Article  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello, FN (2007) Food, fibre and forest products. Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (Eds), Cambridge University Press, Cambridge, UK, pp 273–313

  • EC - Commission of the European Communities (2000) Establishing a framework for Community action in the field of water policy. DIRECTIVE 2000/60/EC OFTHE EUROPEAN PARLIAMENT AND OFTHE COUNCIL of 23 October 2000

  • Eitzinger J, Orlandini S, Stefanski R, Naylor REL (2010) Climate change and agriculture: introductory editorial. Journal of Agricultural Science 148:499–500. doi:10.1017/S0021859610000481

    Article  Google Scholar 

  • Ernst A, Schulz C, Schwarz N, Janisch S (2008) Modelling of water use decisions in a large, spatially explicit, coupled simulation system. In: Edmonds B, Hernández C, Troitzsch KG (eds) Social simulation: Technologies, advances and new discoveries. Information Science Reference, Hershey, pp 138–149

    Google Scholar 

  • Essink GHPO, Van Baaren ES, De Louw PGB (2010) Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resources Research 46 (10) art. no. W00F04

  • Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci Total Environ 408(23):5667–87

    Article  Google Scholar 

  • Ficklin D, Luedelinga E, Zhanga M (2010) Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure. Agricultural Water Management 97:1039–1050

    Article  Google Scholar 

  • Finger R, Hediger W, Schmid S (2010) Irrigation as adaptation strategy to climate change—a biophysical and economic appraisal for Swiss maize production. Climatic Change. doi:10.1007/s10584-010-9931-5

  • Flury M (1996) Experimental evidence of transport of pesticides through field soils—A review. J Environ Qual 25:25–45

    Article  Google Scholar 

  • Foster S, Chilton J, Moench M, Cardy F, Schiffler M (2000) Groundwater in rural development: Facing the challenges of supply and resource sustainability. World Bank Technical Paper No. 463, The World Bank, Washington DC

  • Galán JM, López-Paredes A, Del Olmo R (2009) An agent-based model for domestic water management in Valladolid metropolitan area. Water Resour Res 45(5), art no W05401

  • Giupponi C, Jakeman AJ, Karssenberg G, Hare MP (eds) (2006) Sustainable management of water resources: An integrated approach. Edward Elgar Publishing, Cheltenham, p 361

    Google Scholar 

  • Godden L, Ison R, Wallis P (2011) Water governance in a climate change world: appraising systemic and adaptive effectiveness. Water Resources Management 25(15):3971–3976

    Article  Google Scholar 

  • Groundwater Information Sheet: The impact of agriculture (2009) British Geographical Survey & WaterAid, www.bgs.ac.uk/downloads/start.cfm?id=1295

  • Hallberg G (1986) From hoes to herbicides: agriculture and groundwater quality. Journal of Soil and Water Conservation 41(6):357–364

    Google Scholar 

  • Hank TB (2008) A biophysically based coupled model approach for the assessment of canopy processes under climate change conditions, Dissertation, Ludwig-Maximilians-Universität München. http://edoc.ub.uni-muenchen.de/8725/1/Hank_Tobias_B.pdf

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. USGS

  • Harrison PA, Berry PM, Henriques C, Holman IP (2008) Impacts of socio-economic and climate change scenarios on wetlands: linking water resource and biodiversity meta-models. Climatic Change 90:113–139

    Article  Google Scholar 

  • He B, Wang Y, Takase K, Mouri G, Razafindrabe BHN (2009) Estimating land use impacts on regional scale urban water balance and groundwater recharge. Water Resources Management 23(9):1863–1873

    Article  Google Scholar 

  • Hennicker R, Bauer S, Janisch S, Ludwig M (2010) Agent-based social simulation within a generic framework for environmental modelling. In Proc. WCSS 2010, 3rd World Congress on Social Simulation, Kassel, Germany, September 2010, Center for Environmental Systems Research, University of Kassel (2010)

  • Henseler M, Wirsig A, Herrmann S, Krimly T, Dabbert S (2009) (2009) Modeling the impact of global change on regional agricultural land use through an activity based non-linear programming approach. Agricultural Systems 100:31–42

    Article  Google Scholar 

  • Herrera-Pantoja M, Hiscock KM (2008) The effects of climate change on potential groundwater recharge in Great Britain. Hydrol Proc 22:73–86

    Article  Google Scholar 

  • Holman IP (2006) Climate change impacts on groundwater recharge—uncertainty, shortcomings, and the way forward? Hydrogeology Journal 14:637–647

    Article  Google Scholar 

  • Holman IP, Rounsevell MDA, Shackley S, Harrison PA, Nicholls RJ, Berry PM, Audley E (2005) A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK, Part I: methodology. Climatic Change 71:9–41

    Article  Google Scholar 

  • Jackson CR, Meister R, Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. J Hydrol (article in press). doi:10.1016/j.jhydrol.2010.12.028

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorology and Atmospheric Physics 63(1–2):119–129

    Article  Google Scholar 

  • Jakeman AJ, Letcher RA (2003) Integrated assessment and modelling: features, principles and examples for catchment management. Environmental Modelling & Software 18:491–501

    Article  Google Scholar 

  • Jakeman AJ, Letcher RA, Norton JP (2006) Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software 21:602–614

    Article  Google Scholar 

  • Jones CA, Kiniry JR (eds) (1986) CERES-Maize. A simulation model of maize growth and development. Texas A&M University Press, College Station

    Google Scholar 

  • Klar CW, Fiener P, Neuhaus P, Lenz-Wiedemann VIS, Schneider K (2008) Modelling of soil nitrogen dynamics within the decision support system DANUBIA. Ecological Modelling 217:181–196

    Article  Google Scholar 

  • Krimly T, Apfelbeck J, Huigen M, Dabbert S (2008) Das DeepActor-Modell DeepFarming—TP Agrarökonomie. In: GLOWA-Danube Projekt, Universität München (LMU) (Hrsg.), Global Change Atlas, Einzugsgebiet Obere Donau. GLOWA-Danube Projekt, Universität München

  • Krysanova V, Hattermann F, Habeck A (2005) Expected changes in water resources availability and water quality with respect to climate change in the Elbe River basin. Nordic Hydrology 36(4–5):321–333

    Google Scholar 

  • Leip A, Marchi G, Koeble R, Kempen M, Britz W, Li C (2008) Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences 5:73–94

    Article  Google Scholar 

  • Lenz-Wiedemann VIS, Klar CW, Schneider K (2010) Development and test of a crop growth model for application within a Global Change decision support system. Ecological Modelling 221:314–329

    Article  Google Scholar 

  • Lippert C, Krimly T, Aurbacher J (2009) A Ricardian analysis of the impact of climate change on agriculture in Germany. Climatic Change 97:593–610

    Article  Google Scholar 

  • Lischeid G (2010) Klimawandel oder Landnutzungswandel? was ist gravierender für das Grundwasser? Institut für Geoökologie http://www.stalu-mv.de/cms2/StALU_prod/StALU/de/ms/nb/Themen/19._Neubrandenburger_Kolloquium/_Downloads/05_Lischeid_Klimawandel_Landnutzungswandel.pdf

  • Loaiciga HA (2009) Long-term climatic change and sustainable ground water resources management. Environ Res Lett 4(2009)

  • Ludwig R, Mauser W, Niemeyer S, Colgan A, Stolz R, Escher-Vetter H, Kuhn M, Reichstein M, Tenhunen J, Kraus A, Ludwig M, Barth M, Hennicker R (2003) Web-based modelling of energy, water and matter fluxes to support decision making in mesoscale catchments—the integrative perspective of GLOWA-Danube. Phys Chem Earth 28:621–634

    Google Scholar 

  • Marke T (2008) Development and Application of a Model Interface To couple Land Surface Models with Regional Climate Models For Climate Change Risk Assessment In the Upper Danube Watershed. http://edoc.ub.uni-muenchen.de/9162/1/Marke_Thomas.pdf

  • Mauser W, Bach H (2009) PROMET—A physical hydrological model to study the impact of climate change on the water flows of medium sized mountain watersheds. Journal of Hydrology 376(3–4):362–377

    Article  Google Scholar 

  • Mauser W, Ludwig R (2002) A research concept to develop integrative techniques, scenarios and strategies regarding Global Changes of the water cycle. In: Beniston M (ed) (2002): Climatic Change: Implications for the hydrological cycle and for water management. Advances in Global Change Research. 10, pp 171–188

  • Mauser W, Schädlich S (1998) Modelling the spatial distribution of evapotranspiration an different scales using remote sensing data. Journal of Hydrology 212–213:250–267

    Article  Google Scholar 

  • Molden D (ed) (2007) Water for food, water for life: A comprehensive assessment of water management in agriculture, Earthscan, London and International Water Management Institute, Colombo. ISBN: 978-1-84407-396-2

  • Morgan MG, Mellon C (2011) Certainty, uncertainty, and climate change (2011). Climatic Change 108(4):707–721

    Article  Google Scholar 

  • Motha R, Baier W (2005) Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Climatic Change 70:137–164

    Article  Google Scholar 

  • Nickel D, Barthel R, Schmid C, Braun J (2005) Large-scale water resources management within the framework of GLOWA-Danube—the water supply model. Physics and Chemistry of the Earth 30(6-7):383–388

    Google Scholar 

  • Olesen JE, Carter TR, Díaz-Ambrona CH, Fronzek S, Heidmann T, Hickler T, Holt T, Sykes MT (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81(suppl 1):123–143

    Article  Google Scholar 

  • Paschold PJ, Kleber J, Mayer N (2010) Geisenheimer Bewässerungssteuerung (Geisenheim irrigation scheduling), 4.05.2010. http://botanik.forschungsanstalt-geisenheim.de/uploads/media/Geisenheimer_Steuerung.pdf

  • Pfeiffer A, Zängl G (2009) Validation of climate-mode MM5-simulations for the European Alpine Region. Theor Appl Climatol 101:93–108

    Article  Google Scholar 

  • Pimentel D, Houser J, Preiss E, White O, Fang H, Mesnick L, Barsky T, Tariche S, Schreck J, Alpert S (1997) Water resources: agriculture, the environment, and society. BioScience 47(2):97–106

    Article  Google Scholar 

  • Polasky S, Carpenter SR, Folke C, Keeler B (2011) Decision-making under great uncertainty: environmental management in an era of global change. Trends in Ecology and Evolution 26(8):398–404

    Article  Google Scholar 

  • Purkey DR, Joyce B, Vicuna S, Hanemann MW, Dale LL, Yates D, Dracup JA (2008) Robust analysis of future climate change impacts on water for agriculture and other sectors: a case study in the Sacramento Valley. Climatic Change 87(Suppl 1):109–122

    Article  Google Scholar 

  • Quinn NWT, Brekke LD, Miller NL, Heinzer T, Hidalgo H, Dracup JA (2004) Model integration for assessing future hydroclimate impacts on water resources, agricultural production and environmental quality in the San Joaquin Basin, California. Environmental Modelling & Software 19:305–316

    Article  Google Scholar 

  • Reilly J, Tubiello F, McCarl B, Abler D, Darwin R, Fuglie K, Hollinger S, Izaurralde C, Jagtap S, Jones J, Mearns L, Ojima D, Paul E, Paustian K, Riha S, Rosenberg N, Rosenzweig C (2003) U.S. agriculture and climate change: new results. Climatic Change 57:43–69

    Article  Google Scholar 

  • Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Wang C (2007) Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Energy Policy 35(11):5370–5383. doi:10.1016/j.enpol.2006.01.040

    Article  Google Scholar 

  • Scanlon B, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology 11:1577–1593

    Article  Google Scholar 

  • Schwarz N, Ernst A (2009) Agent-based modeling of the diffusion of environmental innovations—an empirical approach. Technol Forecast Soc Change 76:497–511

    Article  Google Scholar 

  • Scibek J, Allen DM, Cannon AJ, Whitfield PH (2007) Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology 333:165–181

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Soboll A, Elbers M, Barthel R, Schmude J, Ernst A, Ziller R (2011) Scenarios of future water demand: regional scale modelling of the human-environment-system to support decision making under global change conditions. Mitigation and Adaptation Strategies for Global Change. doi:10.1007/s11027-010-9274-6

  • Stoll S, Hendricks Franssen HJ, Butts M, Kinzelbach W (2011) Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods. Hydrol Earth Syst Sci 15:21–38. doi:10.5194/hess-15-21-2011

    Article  Google Scholar 

  • Winter T (2005) Ein Nichtlineares Prozessanalytisches Agrarsektormodell für das Einzugsgebiet der Oberen Donau - Ein Beitrag zum Decision-Support-System GLOWA-DANUBIA, PhD-Thesis, Universität Hohenheim, Stuttgart. http://opus-ho.uni-stuttgart.de/hop/volltexte/2005/91/pdf/Dissertation.pdf

  • Wolf J, Barthel R, Braun J (2008) Modeling ground water flow in alluvial mountainous catchments on a watershed scale. Ground Water 46:695–705

    Article  Google Scholar 

  • Yin X, van Laar HH (2005) Crop systems dynamics. An ecophysiological simulation model for genotype-by-environment interactions. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Zaporozec A, Conrad JE, Hirata R, Johansson P-O, Nonner JC, Romijn E, Weaver JMC (2002) Groundwater contamination inventory: A methodological guide. IHP-VI Series on Groundwater No.2 UNESCO

  • Zimmer, M, Jeßberger C., Sindram M (2011) Global warming induced water-cycle changes and industrial production—A scenario analysis for the Upper Danube River Basin, Jahrbücher Für Nationalökonomie Und Statistik, in press

Download references

Acknowledgements

GLOWA-Danube was funded by the BMBF (German Federal Ministry of Education and Research). The authors would like to thank all governmental organizations, private companies and others who supported our work by providing data, models, advice or additional funding. The authors would also like to thank their colleagues from partner projects within GLOWA-Danube for their cooperation over the past 10 years. We would also like to give our special thanks to Ms. Kara McElhinney, M.Sc. for proofreading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Barthel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthel, R., Reichenau, T.G., Krimly, T. et al. Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources. Water Resour Manage 26, 1929–1951 (2012). https://doi.org/10.1007/s11269-012-0001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-012-0001-9

Keywords

Navigation