Skip to main content
Log in

Contact Angle Measurement Tool Based on Image Analysis

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

We present a cheap solution for assessment of contact angles on sessile drops or menisci formed around partially submerged fibers. The proposed system consists of a simple optical set combined with an open-source software CAMTIA. The fully automatic assessment of contact angles is based on image binarization, identification of regions of interest, boundary smoothing, and contour differentiation. After initial setting of calculation parameters, there is no need for further interaction with the user. This eliminates the need for expensive commercial solutions or tedious manual placement of tangents, guarantees consistency in the assessment procedure, and allows fast bulk processing of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://mech.fsv.cvut.cz/∼nezerka/software.html

  2. Purchased by University of Chemistry and Technology (Czech Republic) for € 18,000.

  3. Purchased by Institute of Physics, CAS (Czech Republic) for € 3,000.

References

  1. Kumar A, Hartland S (1990) Measurement of contact angles from the shape of a drop on a vertical fiber. J Colloid Interface Sci 136(2):455–469. https://doi.org/10.1016/0021-9797(90)90393-3

    Article  Google Scholar 

  2. Bonaccurso E, Butt H-J, Hankeln B, Niesenhaus B, Graf K (2005) Fabrication of microvessels and microlenses from polymers by solvent droplets. Appl Phys Lett 86(12):124101. https://doi.org/10.1063/1.1886263

    Article  Google Scholar 

  3. Blunt MJ (2017) Solutions to equations for multiphase flow. In: Multiphase flow in permeable media. Cambridge University Press, pp 402–436. https://doi.org/10.1017/9781316145098.010

  4. Pinder GF, Gray WG (2008) Essentials of multiphase flow and transport in porous media. John Wiley & Sons Inc. https://doi.org/10.1002/9780470380802

  5. Carroll BJ (1984) The equilibrium of liquid drops on smooth and rough circular cylinders. J Colloid Interface Sci 97:195–200. https://doi.org/10.1016/0021-9797(84)90286-8

    Article  Google Scholar 

  6. Rebouillat S, Letellier B, Steffenino B (1999) Wettability of single fibres – beyond the contact angle approach. Int J Adhes Adhes 19:303–314. https://doi.org/10.1016/s0143-7496(99)00006-8

    Article  Google Scholar 

  7. McHale G, Newton M (2002) Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids Surf A Physicochem Eng Asp 206:79–86. https://doi.org/10.1016/s0927-7757(02)00081-x

    Article  Google Scholar 

  8. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499):2123–2126. https://doi.org/10.1126/science.290.5499.2123

    Article  Google Scholar 

  9. Wu Y, Zhang X, Zhang X, Munyalo M (2014) Modeling and experimental study of vapor phase-diffusion driven sessile drop evaporation. Appl Therm Eng 70(1):560–564. https://doi.org/10.1016/j.applthermaleng.2014.05.049

    Article  Google Scholar 

  10. Bracco G, Holst B (2013) Surface science techniques. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34243-1

  11. Yang H, Jiang P (2010) Self-cleaning diffractive macroporous films by doctor blade coating. Langmuir 26 (15):12598–12604. https://doi.org/10.1021/la1021643

    Article  Google Scholar 

  12. Bhushan B, Jung YC, Koch K (2009) Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25(5):3240–3248. https://doi.org/10.1021/la803860d

    Article  Google Scholar 

  13. Rauscher M, Dietrich S (2008) Wetting phenomena in nanofluidics. Annu Rev Mater Res 38(1):143–172. https://doi.org/10.1146/annurev.matsci.38.060407.132451

    Article  Google Scholar 

  14. Fei K, Chiu CP, Hong CW (2007) Molecular dynamics prediction of nanofluidic contact angle offset by an AFM. Microfluid Nanofluid 4(4):321–330. https://doi.org/10.1007/s10404-007-0187-y

    Article  Google Scholar 

  15. Keshavarz-Motamed Z, Kadem L, Dolatabadi A (2009) Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels. Microfluid Nanofluid 8(1):47–56. https://doi.org/10.1007/s10404-009-0460-3

    Article  Google Scholar 

  16. Nanayakkara YS, Perera S, Bindiganavale S, Wanigasekara E, Moon H, Armstrong DW (2010) The effect of AC frequency on the electrowetting behavior of ionic liquids. Anal Chem 82(8):3146–3154. https://doi.org/10.1021/ac9021852

    Article  Google Scholar 

  17. Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Surface science techniques. Springer Berlin Heidelberg, pp 3–34. https://doi.org/10.1007/978-3-642-34243-1_1

  18. Dettre R, Johnson R (1969) Surface tensions of perfluoroalkanes and polytetrafluoroethylene. J Colloid Interface Sci 31(4):568–569. https://doi.org/10.1016/0021-9797(69)90058-7

    Article  Google Scholar 

  19. Neumann AW, Good RJ (1979) Techniques of measuring contact angles. In: Surface and colloid science. Springer US, pp 31–91. https://doi.org/10.1007/978-1-4615-7969-4_2

  20. Marmur A (2006) Soft contact: measurement and interpretation of contact angles. Soft Matter 2(1):12–17. https://doi.org/10.1039/b514811c

    Article  Google Scholar 

  21. Marmur A (2009) Solid-surface characterization by wetting. Annu Rev Mater Res 39(1):473–489. https://doi.org/10.1146/annurev.matsci.38.060407.132425

    Article  Google Scholar 

  22. Marmur A (2009) A guide to the equilibrium contact angles maze. In: Contact angle, wettability and adhesion, vol 6. Brill Academic Publishers, pp 1–18. https://doi.org/10.1163/ej.9789004169326.i-400.5

  23. Wilhelmy L (1863) Ueber die abhängigkeit der capillaritäts-constanten des alkohols von substanz und gestalt des benetzten festen körpers. Annalen der Physik und Chemie 195:177–217. https://doi.org/10.1002/andp.18631950602

    Article  Google Scholar 

  24. Bigelow WC, Pickett DL, Zisman WA (1946) Oleophobic monolayers. J Colloid Sci 1(6):513–538. https://doi.org/10.1016/0095-8522(46)90059-1

    Article  Google Scholar 

  25. Phillips M, Riddiford A (1972) Dynamic contact angles. II. velocity and relaxation effects for various liquids. J Colloid Interface Sci 41(1):77–85. https://doi.org/10.1016/0021-9797(72)90088-4

    Article  Google Scholar 

  26. Taggart A, Taylor T, Ince C Experiments with flotation reagents. In: Transactions of the American institute of mining and metallurgical engineers, p 87

  27. Adam N, Jessop G (1925) Angles of contact and polarity of solid surfaces. J Chem Soc 127:1863–1868

    Article  Google Scholar 

  28. Schwartz AM, Minor FW (1959) A simplified thermodynamic approach to capillarity. J Colloid Sci 14 (6):572–583. https://doi.org/10.1016/0095-8522(59)90024-8

    Article  Google Scholar 

  29. Schwartz AM, Rader CA, Huey E (1964) Resistance to flow in capillary systems of positive contact angle. In: Advances in chemistry. American Chemical Society, pp 250–267. https://doi.org/10.1021/ba-1964-0043.ch017

  30. Bashforth F, Adams JC An attempt to test the theory of capillary action. Cambridge, London

  31. Hartland S, Hartley RW (1976) Axisymmetric fluid-liquid interfaces. Surface Technology 4(5):495. https://doi.org/10.1016/0376-4583(76)90063-7

    Google Scholar 

  32. Malcolm JD, Paynter HM (1981) Simultaneous determination of contact angle and interfacial tension from sessile drop measurements. J Colloid Interface Sci 82(2):269–275. https://doi.org/10.1016/0021-9797(81)90369-6

    Article  Google Scholar 

  33. Maze C, Burnet G (1969) A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop. Surf Sci 13(2):451–470. https://doi.org/10.1016/0039-6028(69)90204-0

    Article  Google Scholar 

  34. Maze C, Burnet G (1971) Modifications of a non-linear regression technique used to calculate surface tension from sessile drops. Surf Sci 24 (1):335–342. https://doi.org/10.1016/0039-6028(71)90240-8

    Article  Google Scholar 

  35. Huh C, Reed R (1983) A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J Colloid Interface Sci 91(2):472–484. https://doi.org/10.1016/0021-9797(83)90361-2

    Article  Google Scholar 

  36. Boyce JF, Schrch S, Rotenberg Y, Neumann AW (1984) The measurement of surface and interfacial tension by the axisymmetric drop technique. Colloids Surf 9(4):307–317. https://doi.org/10.1016/0166-6622(84)80174-2

    Article  Google Scholar 

  37. Anastasiadis S, Chen J-K, Koberstein J, Siegel A, Sohn J, Emerson J (1987) The determination of interfacial tension by video image processing of pendant fluid drops. J Colloid Interface Sci 119 (1):55–66. https://doi.org/10.1016/0021-9797(87)90244-x

    Article  Google Scholar 

  38. Hogg RV (1979) An introduction to robust estimation. In: Robustness in statistics. Elsevier, pp 1–17. https://doi.org/10.1016/b978-0-12-438150-6.50007-8

  39. Fisher LR, Israelachvili JN (1981) Experimental studies on the applicability of the kelvin equation to highly curved concave menisci. J Colloid Interface Sci 80(2):528–541. https://doi.org/10.1016/0021-9797(81)90212-5

    Article  Google Scholar 

  40. Rotenberg Y, Boruvka L, Neumann A (1983) Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci 93(1):169–183. https://doi.org/10.1016/0021-9797(83)90396-x

    Article  Google Scholar 

  41. Cabezas MG, Bateni A, Montanero JM, Neumann AW (2004) A new drop-shape methodology for surface tension measurement. Appl Surf Sci 238(1-4):480–484. https://doi.org/10.1016/j.apsusc.2004.05.250

    Article  Google Scholar 

  42. Cabezas MG, Bateni A, Montanero JM, Neumann AW (2005) A new method of image processing in the analysis of axisymmetric drop shapes. Colloids Surf A Physicochem Eng Asp 255(1-3): 193–200. https://doi.org/10.1016/j.colsurfa.2004.12.049

    Article  Google Scholar 

  43. The MathWorks I. Matlab release 2011a, http://www.mathworks.com/products/matlab/, Natick, Massachusetts, U.S.

  44. Haralick RM, Shapiro LG (1992) Computer and robot vision, vol I. Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  45. Cleveland WS, Develin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610. https://doi.org/10.1080/01621459.1988.10478639

    Article  Google Scholar 

Download references

Acknowledgment

The support by the Czech Science Foundation under the research project No. 15-12420S is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nežerka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nežerka, V., Somr, M. & Trejbal, J. Contact Angle Measurement Tool Based on Image Analysis. Exp Tech 42, 271–278 (2018). https://doi.org/10.1007/s40799-017-0231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-017-0231-0

Keywords

Navigation