Skip to main content

Advertisement

Log in

Mobilization of Per- and Polyfluoroalkyl Substances (PFAS) in Soils: A Review

  • Sediment Pollution (D Lampert, Section Editor)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Soils can receive a considerable amount of perfluoroalkyl and polyfluoroalkyl substances (PFAS) via different contamination pathways. Remediating PFAS-contaminated soils is primarily limited to immobilization whereby the concentration of PFAS remains practically unaffected. Other remediation techniques include chemical and thermal methods, which are typically associated with very high costs and substantial energy usage requirements. A more cost-effective approach, however, could be to mobilize PFAS from the bulky soil to a medium (e.g., water, sorbents, plants) that can be sequentially treated or properly disposed of.

Recent Findings

Soil washing, soil flushing, and liquefractionation are particularly promising mobilization approaches for treating permeable soils by desorbing the PFAS into a solution that can be subsequently treated, with liquefractionation generating the least wastewater volume. For cohesive soils, however, electrokinetic remediation would be more suitable for mobilizing PFAS. Another option could be phytoremediation, resulting in the confinement of PFAS in a small volume of plant parts which can be thermally converted into a valuable product, such as biochar, whereby PFAS is either adsorbed onto the carbonaceous matter or destroyed depending on the temperatures adopted.

Summary

This review thoroughly discusses all mobilization techniques that can be used for treating PFAS-contaminated soils, while investigating the possibility of combining such techniques with other approaches to enhance the treatment efficiency. Unfortunately, research on coupling mobilization methods with other remediation techniques for treating PFAS-contaminated soils is significantly lacking, and thus, additional studies on the effectiveness of such hybrid approaches should be carried out while providing cost estimations in terms of removal efficiencies, process longevity, and waste regeneration or disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Sinclair GM, Long SM, Jones OA. What are the effects of PFAS exposure at environmentally relevant concentrations? Chemosphere. 2020;258: 127340. https://doi.org/10.1016/j.chemosphere.2020.127340.

    Article  CAS  Google Scholar 

  2. Ding N, Harlow SD, Randolph JF Jr, Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update. 2020;26(5):724–52. https://doi.org/10.1093/humupd/dmaa018.

    Article  CAS  Google Scholar 

  3. Van Beijsterveldt IA, van Zelst BD, van den Berg SA, de Fluiter KS, van der Steen M, Hokken-Koelega AC. Longitudinal poly-and perfluoroalkyl substances (PFAS) levels in Dutch infants. Environ Int. 2022;160:107068. https://doi.org/10.1016/j.envint.2021.107068.

    Article  CAS  Google Scholar 

  4. Cui D, Li X, Quinete N. Occurrence, fate, sources and toxicity of PFAS: what we know so far in Florida and major gaps. TrAC, Trends Anal Chem. 2020;130:115976. https://doi.org/10.1016/j.trac.2020.115976.

    Article  CAS  Google Scholar 

  5. Cao Y, Ng C. Absorption, distribution, and toxicity of per-and polyfluoroalkyl substances (PFAS) in the brain: a review. Environ Sci Process Impacts. 2021. https://doi.org/10.1039/D1EM00228G.

    Article  Google Scholar 

  6. Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, Ng CA, Scheringer M, Wang Z. The high persistence of PFAS is sufficient for their management as a chemical class. Environ Sci Process Impacts. 2020;22(12):2307–12. https://doi.org/10.1039/D0EM00355G.

    Article  CAS  Google Scholar 

  7. Hale SE, Arp HPH, Slinde GA, Wade EJ, Bjørseth K, Breedveld GD, Straith BF, Moe KG, Jartun M, Høisæter Å. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. Chemosphere. 2017;171:9–18. https://doi.org/10.1016/j.chemosphere.2016.12.057.

    Article  CAS  Google Scholar 

  8. Schroeder T, Bond D, Foley J. PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State. USA, Environmental Science: Processes & Impacts. 2021;23(2):291–301. https://doi.org/10.1039/D0EM00427H.

    Article  CAS  Google Scholar 

  9. Guo B, Zeng J, Brusseau ML, Zhang Y. A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater. Adv Water Res. 2022;104102. https://doi.org/10.1016/j.advwatres.2021.104102.

  10. • Brusseau ML, Anderson RH, Guo B. PFAS concentrations in soils: background levels versus contaminated sites. Sci Total Environ. 2020;740:140017. This article investigates the concentration of PFAS in soils contaminated via different pathways.

    Article  CAS  Google Scholar 

  11. Ahmed M, Johir M, McLaughlan R, Nguyen LN, Xu B, Nghiem LD. Per-and polyfluoroalkyl substances in soil and sediments: occurrence, fate, remediation and future outlook. Sci Total Environ. 2020;748:141251. https://doi.org/10.1016/j.scitotenv.2020.141251.

    Article  CAS  Google Scholar 

  12. Bolan N, Sarkar B, Vithanage M, Singh G, Tsang DC, Mukhopadhyay R, Ramadass K, Vinu A, Sun Y, Ramanayaka S. Distribution, behaviour, bioavailability and remediation of poly-and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environ Int. 2021;155:106600. https://doi.org/10.1016/j.envint.2021.106600.

    Article  CAS  Google Scholar 

  13. McCarthy CJ, Roark SA, Middleton ET. Considerations for toxicity experiments and risk assessments with PFAS mixtures. Integr Environ Assess Manag. 2021;17(4):697–704. https://doi.org/10.1002/ieam.4415.

    Article  CAS  Google Scholar 

  14. Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per-and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research Environmental toxicology and chemistry. 2021;40(3):606–30. https://doi.org/10.1002/etc.4890.

    Article  CAS  Google Scholar 

  15. Gaballah S, Swank A, Sobus JR, Howey XM, Schmid J, Catron T, McCord J, Hines E, Strynar M, Tal T. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ Health Perspect. 2020;128(4):047005. https://doi.org/10.1289/EHP5843.

    Article  CAS  Google Scholar 

  16. Verma S, Varma RS, Nadagouda MN. Remediation and mineralization processes for per-and polyfluoroalkyl substances (PFAS) in water: a review. Sci Total Environ. 2021;794:148987. https://doi.org/10.1016/j.scitotenv.2021.148987.

    Article  CAS  Google Scholar 

  17. Mahinroosta R, Senevirathna L. A review of the emerging treatment technologies for PFAS contaminated soils. J Environ Manage. 2020;255:109896. https://doi.org/10.1016/j.jenvman.2019.109896.

    Article  CAS  Google Scholar 

  18. Bolan N, Sarkar B, Yan Y, Li Q, Wijesekara H, Kannan K, Tsang DC, Schauerte M, Bosch J, Noll H. Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils–to mobilize or to immobilize or to degrade? J Hazard Mater. 2021;401:123892. https://doi.org/10.1016/j.jhazmat.2020.123892.

    Article  CAS  Google Scholar 

  19. McGregor R. In situ treatment of PFAS-impacted groundwater using colloidal activated carbon. Remediat J. 2018;28(3):33–41. https://doi.org/10.1002/rem.21558.

    Article  Google Scholar 

  20. Sörengård M, Kleja DB, Ahrens L. Stabilization of per-and polyfluoroalkyl substances (PFASs) with colloidal activated carbon (PlumeStop®) as a function of soil clay and organic matter content. J Environ Manage. 2019;249:109345. https://doi.org/10.1016/j.jenvman.2019.109345.

    Article  CAS  Google Scholar 

  21. Zhao L, Zhu L, Zhao S, Ma X. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: implications for their underestimated risk. Sci Total Environ. 2016;572:169–76. https://doi.org/10.1016/j.scitotenv.2016.07.196.

    Article  CAS  Google Scholar 

  22. Qian J, Shen M, Wang P, Wang C, Hou J, Ao Y, Liu J, Li K. Adsorption of perfluorooctane sulfonate on soils: effects of soil characteristics and phosphate competition. Chemosphere. 2017;168:1383–8. https://doi.org/10.1016/j.chemosphere.2016.11.114.

    Article  CAS  Google Scholar 

  23. Guo W, Lu S, Shi J, Zhao X. Effect of corn straw biochar application to sediments on the adsorption of 17α-ethinyl estradiol and perfluorooctane sulfonate at sediment-water interface. Ecotoxicol Environ Saf. 2019;174:363–9. https://doi.org/10.1016/j.ecoenv.2019.01.128.

    Article  CAS  Google Scholar 

  24. Das P, Arias E VA, Kambala V, Mallavarapu M, Naidu R. Remediation of perfluorooctane sulfonate in contaminated soils by modified clay adsorbent—a risk-based approach. Water, Air, & Soil Pollution. 2013 Dec;224(12):1-4. https://doi.org/10.1007/s11270-013-1714-y.

  25. Li K, Wang P, Qian J, Wang C, Xing L, Liu J, Tian X, Lu B, Tang W. Effects of sediment components and TiO2 nanoparticles on perfluorooctane sulfonate adsorption properties. J Soils Sediments. 2019;19(4):2034–47. https://doi.org/10.1007/s11368-018-2115-z.

    Article  Google Scholar 

  26. Aly YH, McInnis DP, Lombardo SM, Arnold WA, Pennell KD, Hatton J, Simcik MF. Enhanced adsorption of perfluoro alkyl substances for in situ remediation. Environ Sci: Water Res Technol. 2019;5(11):1867–75. https://doi.org/10.1039/C9EW00426B.

    Article  CAS  Google Scholar 

  27. Sörengård M, Kleja DB, Ahrens L. Stabilization and solidification remediation of soil contaminated with poly-and perfluoroalkyl substances (PFASs). J Hazard Mater. 2019;367:639–46. https://doi.org/10.1016/j.jhazmat.2019.01.005.

    Article  CAS  Google Scholar 

  28. Wei C, Song X, Wang Q, Hu Z. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties. Ecotoxicol Environ Saf. 2017;142:40–50. https://doi.org/10.1016/j.ecoenv.2017.03.040.

    Article  CAS  Google Scholar 

  29. Barth E, McKernan J, Bless D, Dasu K. Investigation of an immobilization process for PFAS contaminated soils. J Environ Manage. 2021;296:113069. https://doi.org/10.1016/j.jenvman.2021.113069.

    Article  CAS  Google Scholar 

  30. Sleep JA, Juhasz AL. A review of immobilisation-based remediation of per-and poly-fluoroalkyl substances (PFAS) in soils. Curr Poll Rep. 2021;1–16. https://doi.org/10.1007/s40726-021-00199-z.

  31. Dombrowski PM, Kakarla P, Caldicott W, Chin Y, Sadeghi V, Bogdan D, Barajas-Rodriguez F, Chiang SY. Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS. Remediat J. 2018;28(2):135–50. https://doi.org/10.1002/rem.21555.

    Article  Google Scholar 

  32. Wang Y, Longendyke G, Katel S. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. Environ Sci Process Impacts. 2022. https://doi.org/10.1039/D1EM00465D.

    Article  Google Scholar 

  33. Høisæter Å, Arp HPH, Slinde G, Knutsen H, Hale SE, Breedveld GD, Hansen MC. Excavated vs novel in situ soil washing as a remediation strategy for sandy soils impacted with per-and polyfluoroalkyl substances from aqueous film forming foams. Sci Total Environ. 2021;794:148763. https://doi.org/10.1016/j.scitotenv.2021.148763.

    Article  CAS  Google Scholar 

  34. Wang J, Lin Z, He X, Song M, Westerhoff P, Doudrick K, Hanigan D. Critical review of thermal decomposition of per-and polyfluoroalkyl substances: mechanisms and implications for thermal treatment processes. Environ Sci Technol. 2022;56(9):5355–70. https://doi.org/10.1021/acs.est.2c02251.

    Article  CAS  Google Scholar 

  35. Lu D, Sha S, Luo J, Huang Z, Jackie XZ. Treatment train approaches for the remediation of per-and polyfluoroalkyl substances (PFAS): a critical review. J Hazard Mater. 2020;386:121963. https://doi.org/10.1016/j.jhazmat.2019.121963.

    Article  CAS  Google Scholar 

  36. Darlington R, Barth E, McKernan J. The challenges of PFAS remediation. The Military Engineer. 2018;110(712):58.

    Google Scholar 

  37. Uriakhil MA, Sidnell T, Fernández ADC, Lee J, Ross I, Bussemaker M. Per-and poly-fluoroalkyl substance remediation from soil and sorbents: a review of adsorption behaviour and ultrasonic treatment. Chemosphere. 2021;282:131025. https://doi.org/10.1016/j.chemosphere.2021.131025.

    Article  CAS  Google Scholar 

  38. Kucharzyk KH, Darlington R, Benotti M, Deeb R, Hawley E. Novel treatment technologies for PFAS compounds: a critical review. J Environ Manage. 2017;204:757–64. https://doi.org/10.1016/j.jenvman.2017.08.016.

    Article  CAS  Google Scholar 

  39. Ross I, McDonough J, Miles J, Storch P, Thelakkat Kochunarayanan P, Kalve E, Hurst J, S. Dasgupta S, Burdick J. A review of emerging technologies for remediation of PFASs. Remed J. 2018 Mar;28(2):101-26. https://doi.org/10.1002/rem.21553.

  40. Shahsavari E, Rouch D, Khudur LS, Thomas D, Aburto-Medina A, Ball AS. Challenges and current status of the biological treatment of PFAS-contaminated soils. Front Bioeng Biotech. 2021;1493. https://doi.org/10.3389/fbioe.2020.602040.

  41. Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per-and polyfluoroalkyl substances (PFAS): a review. Biores Technol. 2022;344:126223. https://doi.org/10.1016/j.biortech.2021.126223.

    Article  CAS  Google Scholar 

  42. Kumar M, Bolan N, Zad TJ, Padhye L, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H. Mobilization of contaminants: potential for soil remediation and unintended consequences. Sci Total Environ. 2022;156373. https://doi.org/10.1016/j.scitotenv.2022.156373.

  43. Adamson DT, Kulkarni PR, Nickerson A, Higgins CP, Field J, Schwichtenberg T, Newell C, Kornuc JJ. Characterization of relevant site-specific PFAS fate and transport processes at multiple AFFF sites. Environ Adv. 2022;100167. https://doi.org/10.1016/j.envadv.2022.100167.

  44. Liu M, Munoz G, Vo Duy S, Sauvé S, Liu J. Per-and polyfluoroalkyl substances in contaminated soil and groundwater at airports: a Canadian case study. Environ Sci Tech. 2021. https://doi.org/10.1021/acs.est.1c04798.

  45. Kabiri S, Tucker W, Navarro DA, Bräunig J, Thompson K, Knight ER, Nguyen TMH, Grimison C, Barnes CM, Higgins CP. Comparing the leaching behavior of per-and polyfluoroalkyl substances from contaminated soils using static and column leaching tests Environmental science & technology. 2021. https://doi.org/10.1021/acs.est.1c06604.

    Article  Google Scholar 

  46. Groffen T, Eens M, Bervoets L. Do concentrations of perfluoroalkylated acids (PFAAs) in isopods reflect concentrations in soil and songbirds? A study using a distance gradient from a fluorochemical plant, Science of the Total Environment. 2019;657:111–23. https://doi.org/10.1016/j.scitotenv.2018.12.072.

    Article  CAS  Google Scholar 

  47. Lang JR, Allred BM, Field JA, Levis JW, Barlaz MA. National estimate of per-and polyfluoroalkyl substance (PFAS) release to US municipal landfill leachate. Environ Sci Technol. 2017;51(4):2197–205. https://doi.org/10.1021/acs.est.6b05005.

    Article  CAS  Google Scholar 

  48. Gallen C, Drage D, Eaglesham G, Grant S, Bowman M, Mueller J. Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. J Hazard Mater. 2017;331:132–41. https://doi.org/10.1016/j.jhazmat.2017.02.006.

    Article  CAS  Google Scholar 

  49. Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M. Contamination of groundwater with per-and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ Pollut. 2019;248:101–13. https://doi.org/10.1016/j.envpol.2019.02.018.

    Article  CAS  Google Scholar 

  50. Masoner JR, Kolpin DW, Cozzarelli IM, Smalling KL, Bolyard SC, Field JA, Furlong ET, Gray JL, Lozinski D, Reinhart D, Rodowa A. Landfill leachate contributes per-/poly-fluoroalkyl substances (PFAS) and pharmaceuticals to municipal wastewater. Environ Sci Water Res Techn. 2020;6(5):1300-1311. http://xlink.rsc.org/?DOI=d0ew00045k.

  51. Pepper IL, Brusseau ML, Prevatt FJ, Escobar BA. Incidence of Pfas in soil following long-term application of class B biosolids. Sci Total Environ. 2021;793:148449. https://doi.org/10.1016/j.scitotenv.2021.148449.

    Article  CAS  Google Scholar 

  52. Munoz G, Michaud AM, Liu M, Vo Duy S, Montenach D, Resseguier C, Watteau F, Sappin-Didier V, Feder F, Morvan T. Target and nontarget screening of PFAS in biosolids, composts, and other organic waste products for land application in France. Environ Sci Techno. 2021. https://doi.org/10.1021/acs.est.1c03697.

  53. Kolpin DW, Hubbard LE, Cwiertny DM, Meppelink SM, Thompson DA, Gray JL. A comprehensive statewide spatiotemporal stream assessment of per-and polyfluoroalkyl substances (PFAS) in an agricultural region of the United States. Environ Sci Technol Lett. 2021;8(11):981–8. https://doi.org/10.1021/acs.estlett.1c00750.

    Article  CAS  Google Scholar 

  54. Rigby H, Dowding A, Fernandes A, Humphries D, Jones NR, Lake I, Petch RG, Reynolds CK, Rose M, Smith SR. Concentrations of organic contaminants in industrial and municipal bioresources recycled in agriculture in the UK. Sci Total Environ. 2021;765:142787. https://doi.org/10.1016/j.scitotenv.2020.142787.

    Article  CAS  Google Scholar 

  55. Zhang M, Wang P, Lu Y, Shi Y, Wang C, Sun B, Li X, Song S, Yu M, Zhao J. Transport and environmental risks of perfluoroalkyl acids in a large irrigation and drainage system for agricultural production. Environ Int. 2021;157:106856. https://doi.org/10.1016/j.envint.2021.106856.

    Article  CAS  Google Scholar 

  56. Johnson GR. PFAS in soil and groundwater following historical land application of biosolids. Water Res. 2022;118035. https://doi.org/10.1016/j.watres.2021.118035.

  57. Skaar JS, Ræder EM, Lyche JL, Ahrens L, Kallenborn R. Elucidation of contamination sources for poly-and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic). Environ Sci Pollut Res. 2019;26(8):7356–63.

    Article  CAS  Google Scholar 

  58. Zhu H, Kannan K. Distribution and partitioning of perfluoroalkyl carboxylic acids in surface soil, plants, and earthworms at a contaminated site. Sci Total Environ. 2019;647:954–61. https://doi.org/10.1016/j.scitotenv.2018.08.051.

    Article  CAS  Google Scholar 

  59. Liu Z, Lu Y, Shi Y, Wang P, Jones K, Sweetman AJ, Johnson AC, Zhang M, Zhou Y, Lu X. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park. China, Environment international. 2017;106:37–47. https://doi.org/10.1016/j.envint.2017.05.014.

    Article  CAS  Google Scholar 

  60. Morales-McDevitt ME. The air that we breathe: neutral PFAS in indoor and outdoor air, Ph.D. University of Rhode Island. 2021;9332.

  61. D’Ambro EL, Pye HO, Bash JO, Bowyer J, Allen C, Efstathiou C, Gilliam RC, Reynolds L, Talgo K, Murphy BN. Characterizing the air emissions, transport, and deposition of per-and polyfluoroalkyl substances from a fluoropolymer manufacturing facility. Environ Sci Technol. 2021;55(2):862–70. https://doi.org/10.1021/acs.est.0c06580.

    Article  CAS  Google Scholar 

  62. Ahmadireskety A, Da Silva BF, Robey NM, Douglas TE, Aufmuth J, Solo-Gabriele HM, Yost RA, Townsend TG, Bowden JA. Per-and polyfluoroalkyl substances (PFAS) in street sweepings. Environ Sci Technol. 2021. https://doi.org/10.1021/acs.est.1c03766.

    Article  Google Scholar 

  63. Bao J, Li C-L, Liu Y, Wang X, Yu W-J, Liu Z-Q, Shao L-X, Jin Y-H. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin. China, Environmental Research. 2020;188:109751. https://doi.org/10.1016/j.envres.2020.109751.

    Article  CAS  Google Scholar 

  64. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, De Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4):513–41. https://doi.org/10.1002/ieam.258.

    Article  CAS  Google Scholar 

  65. Washington JW, Yoo H, Ellington JJ, Jenkins TM, Libelo EL. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur. Alabama, USA, Environmental science & technology. 2010;44(22):8390–6. https://doi.org/10.1021/es1003846.

    Article  CAS  Google Scholar 

  66. Sepulvado JG, Blaine AC, Hundal LS, Higgins CP. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environ Sci Technol. 2011;45(19):8106–12. https://doi.org/10.1021/es103903d.

    Article  CAS  Google Scholar 

  67. Baduel C, Mueller JF, Rotander A, Corfield J, Gomez-Ramos M-J. Discovery of novel per-and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere. 2017;185:1030–8. https://doi.org/10.1016/j.chemosphere.2017.06.096.

    Article  CAS  Google Scholar 

  68. Casson R, Chiang SY. Integrating total oxidizable precursor assay data to evaluate fate and transport of PFASs. Remediat J. 2018;28(2):71–87. https://doi.org/10.1002/rem.21551.

    Article  Google Scholar 

  69. Dauchy X, Boiteux V, Colin A, Hémard J, Bach C, Rosin C, Munoz J-F. Deep seepage of per-and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination. Chemosphere. 2019;214:729–37. https://doi.org/10.1016/j.chemosphere.2018.10.003.

    Article  CAS  Google Scholar 

  70. Guo B, Zeng J, Brusseau ML. A mathematical model for the release, transport, and retention of per‐and polyfluoroalkyl substances (PFAS) in the vadose zone. Water Resource Res. 2020;56(2):e2019WR026667. https://doi.org/10.1029/2019WR026667.

  71. Sørmo E, Silvani L, Bjerkli N, Hagemann N, Zimmerman AR, Hale SE, Hansen CB, Hartnik T, Cornelissen G. Stabilization of PFAS-contaminated soil with activated biochar. Sci Total Environ. 2021;763:144034. https://doi.org/10.1016/j.scitotenv.2020.144034.

    Article  CAS  Google Scholar 

  72. Nason SL, Koelmel J, Zuverza-Mena N, Stanley C, Tamez C, Bowden JA, Godri Pollitt KJ. Software comparison for nontargeted analysis of pfas in afff-contaminated soil. J Am Soc Mass Spectro. 2020;32(4):840-6. https://doi.org/10.1021/jasms.0c00261.

  73. Naile JE, Khim JS, Wang T, Chen C, Luo W, Kwon B-O, Park J, Koh C-H, Jones PD, Lu Y. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ Pollut. 2010;158(5):1237–44. https://doi.org/10.1016/j.envpol.2010.01.023.

    Article  CAS  Google Scholar 

  74. Naile JE, Khim JS, Hong S, Park J, Kwon B-O, Ryu JS, Hwang JH, Jones PD, Giesy JP. Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. Chemosphere. 2013;90(2):387–94. https://doi.org/10.1016/j.chemosphere.2012.07.033.

    Article  CAS  Google Scholar 

  75. Pan Y, Shi Y, Wang J, Jin X, Cai Y. Pilot investigation of perfluorinated compounds in river water, sediment, soil and fish in Tianjin. China, Bulletin of Environmental Contamination and Toxicology. 2011;87(2):152–7. https://doi.org/10.1007/s00128-011-0313-0.

    Article  CAS  Google Scholar 

  76. Wang T, Chen C, Naile JE, Khim JS, Giesy JP, Lu Y. Perfluorinated compounds in water, sediment and soil from Guanting Reservoir. China, Bulletin of Environmental Contamination and Toxicology. 2011;87(1):74–9. https://doi.org/10.1007/s00128-011-0307-y.

    Article  CAS  Google Scholar 

  77. Wang T, Lu Y, Chen C, Naile JE, Khim JS, Park J, Luo W, Jiao W, Hu W, Giesy JP. Perfluorinated compounds in estuarine and coastal areas of north Bohai Sea. China, Marine pollution bulletin. 2011;62(8):1905–14. https://doi.org/10.1016/j.marpolbul.2011.05.029.

    Article  CAS  Google Scholar 

  78. Wang T, Lu Y, Chen C, Naile JE, Khim JS, Giesy JP. Perfluorinated compounds in a coastal industrial area of Tianjin. China, Environmental Geochemistry and Health. 2012;34(3):301–11. https://doi.org/10.1007/s10653-011-9422-2.

    Article  CAS  Google Scholar 

  79. Wang P, Wang T, Giesy JP, Lu Y. Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry parks in China. Chemosphere. 2013;91(6):751–7. https://doi.org/10.1016/j.chemosphere.2013.02.017.

    Article  CAS  Google Scholar 

  80. Meng J, Wang T, Wang P, Giesy JP, Lu Y. Perfluorinated compounds and organochlorine pesticides in soils around Huaihe River: a heavily contaminated watershed in Central China. Environ Sci Pollut Res. 2013;20(6):3965–74. https://doi.org/10.1007/s11356-012-1338-6.

    Article  CAS  Google Scholar 

  81. Kim EJ, Park Y-M, Park J-E, Kim J-G. Distributions of new Stockholm convention POPs in soils across South Korea. Sci Total Environ. 2014;476:327–35. https://doi.org/10.1016/j.scitotenv.2014.01.034.

    Article  CAS  Google Scholar 

  82. Kim W-S, Jeon E-K, Jung J-M, Jung H-B, Ko S-H, Seo C-I, Baek K. Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration. Environ Sci Pollut Res. 2014;21(6):4482–91. https://doi.org/10.1007/s11356-013-2424-0.

    Article  CAS  Google Scholar 

  83. Tan B, Wang T, Wang P, Luo W, Lu Y, Romesh KY, Giesy JP. Perfluoroalkyl substances in soils around the Nepali Koshi River: levels, distribution, and mass balance. Environ Sci Pollut Res. 2014;21(15):9201–11. https://doi.org/10.1007/s11356-014-2835-6.

    Article  CAS  Google Scholar 

  84. Meng J, Wang T, Wang P, Zhang Y, Li Q, Lu Y, Giesy JP. Are levels of perfluoroalkyl substances in soil related to urbanization in rapidly developing coastal areas in North China? Environ Pollut. 2015;199:102–9. https://doi.org/10.1016/j.envpol.2015.01.022.

    Article  CAS  Google Scholar 

  85. Chen S, Jiao X-C, Gai N, Li X-J, Wang X-C, Lu G-H, Piao H-T, Rao Z, Yang Y-L. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ Pollut. 2016;211:124–31. https://doi.org/10.1016/j.envpol.2015.12.024.

    Article  CAS  Google Scholar 

  86. Zhang Y, Tan D, Geng Y, Wang L, Peng Y, He Z, Xu Y, Liu X. Perfluorinated compounds in greenhouse and open agricultural producing areas of three provinces of China: levels, sources and risk assessment. Int J Environ Res Public Health. 2016;13(12):1224. https://doi.org/10.3390/ijerph13121224.

    Article  CAS  Google Scholar 

  87. Choi G-H, Lee D-Y, Jeong D-K, Kuppusamy S, Lee YB, Park B-J, Kim J-H. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in the South Korean agricultural environment: a national survey. J Integr Agric. 2017;16(8):1841–51. https://doi.org/10.1016/S2095-3119(16)61585-X.

    Article  CAS  Google Scholar 

  88. Meng J, Wang T, Song S, Wang P, Li Q, Zhou Y, Lu Y. Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas. China, Environmental Pollution. 2018;238:404–12. https://doi.org/10.1016/j.envpol.2018.03.056.

    Article  CAS  Google Scholar 

  89. Scher DP, Kelly JE, Huset CA, Barry KM, Hoffbeck RW, Yingling VL, Messing RB. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere. 2018;196:548–55. https://doi.org/10.1016/j.chemosphere.2017.12.179.

    Article  CAS  Google Scholar 

  90. Dalahmeh S, Tirgani S, Komakech AJ, Niwagaba CB, Ahrens L. Per-and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala. Uganda, Science of the Total Environment. 2018;631:660–7. https://doi.org/10.1016/j.scitotenv.2018.03.024.

    Article  CAS  Google Scholar 

  91. Seo S-H, Son M-H, Shin E-S, Choi S-D, Chang Y-S. Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. J Hazard Mater. 2019;364:19–27. https://doi.org/10.1016/j.jhazmat.2018.10.012.

    Article  CAS  Google Scholar 

  92. Zhang G, Pan Z, Wu Y, Shang R, Zhou X, Fan Y. Distribution of perfluorinated compounds in surface water and soil in partial areas of Shandong Province. China, Soil and Sediment Contamination: An International J. 2019;28(5):502–12. https://doi.org/10.1080/15320383.2019.1635079.

    Article  CAS  Google Scholar 

  93. Sörengård M, Kikuchi J, Wiberg K, Lutz A. Spatial distribution and load of per-and polyfluoroalkyl substances (Pfass) in background soils in Sweden. CHEM96309. 2022. https://doi.org/10.2139/ssrn.3982881.

  94. Wang Q, Ruan Y, Zhao Z, Zhang L, Hua X, Jin L, Chen H, Wang Y, Yao Y, Lam PKS, Zhu L, Sun H. Per- and polyfluoroalkyl substances (PFAS) in the Three-North Shelter Forest in northern China: first survey on the effects of forests on the behavior of PFAS. J Hazard Mater. 2022;427:128157. https://doi.org/10.1016/j.jhazmat.2021.128157.

    Article  CAS  Google Scholar 

  95. Wilhelm M, Kraft M, Rauchfuss K, Hölzer J. Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the region Sauerland. North Rhine-Westphalia, J Toxic Environ Health, Part A. 2008;71(11–12):725–33. https://doi.org/10.1080/15287390801985216.

    Article  CAS  Google Scholar 

  96. Wang Y, Fu J, Wang T, Liang Y, Pan Y, Cai Y, Jiang G. Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China. Environ Sci Technol. 2010;44(21):8062–7. https://doi.org/10.1021/es101810h.

    Article  CAS  Google Scholar 

  97. Li F, Zhang C, Qu Y, Chen J, Chen L, Liu Y, Zhou Q. Quantitative characterization of short-and long-chain perfluorinated acids in solid matrices in Shanghai. China, Science of the Total Environment. 2010;408(3):617–23. https://doi.org/10.1016/j.scitotenv.2009.10.032.

    Article  CAS  Google Scholar 

  98. Shan G, Wei M, Zhu L, Liu Z, Zhang Y. Concentration profiles and spatial distribution of perfluoroalkyl substances in an industrial center with condensed fluorochemical facilities. Sci Total Environ. 2014;490:351–9. https://doi.org/10.1016/j.scitotenv.2014.05.005.

    Article  CAS  Google Scholar 

  99. Xiao F, Simcik MF, Halbach TR, Gulliver JS. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: migration and implications for human exposure. Water Res. 2015;72:64–74. https://doi.org/10.1016/j.watres.2014.09.052.

    Article  CAS  Google Scholar 

  100. Bräunig J, Baduel C, Heffernan A, Rotander A, Donaldson E, Mueller JF. Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. Sci Total Environ. 2017;596:360–8. https://doi.org/10.1016/j.scitotenv.2017.04.095.

    Article  CAS  Google Scholar 

  101. Gao Y, Liang Y, Gao K, Wang Y, Wang C, Fu J, Wang Y, Jiang G, Jiang Y. Levels, spatial distribution and isomer profiles of perfluoroalkyl acids in soil, groundwater and tap water around a manufactory in China. Chemosphere. 2019;227:305–14. https://doi.org/10.1016/j.chemosphere.2019.04.027.

    Article  CAS  Google Scholar 

  102. Li P, Oyang X, Zhao Y, Tu T, Tian X, Li L, Zhao Y, Li J, Xiao Z. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. Chemosphere. 2019;225:659–67. https://doi.org/10.1016/j.chemosphere.2019.03.045.

    Article  CAS  Google Scholar 

  103. Niarchos G, Sörengård M, Fagerlund F, Ahrens L. Electrokinetic remediation for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated soil. Chemosphere. 2022;291:133041. https://doi.org/10.1016/j.chemosphere.2021.133041.

    Article  CAS  Google Scholar 

  104. Kärrman A, Elgh-Dalgren K, Lafossas C, Møskeland T. Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination. Environ Chem. 2011;8(4):372–80. https://doi.org/10.1071/EN10145.

    Article  CAS  Google Scholar 

  105. McGuire ME, Schaefer C, Richards T, Backe WJ, Field JA, Houtz E, Sedlak DL, Guelfo JL, Wunsch A, Higgins CP. Evidence of remediation-induced alteration of subsurface poly-and perfluoroalkyl substance distribution at a former firefighter training area. Environ Sci Technol. 2014;48(12):6644–52. https://doi.org/10.1021/es5006187.

    Article  CAS  Google Scholar 

  106. Filipovic M, Woldegiorgis A, Norström K, Bibi M, Lindberg M, Österås A-H. Historical usage of aqueous film forming foam: a case study of the widespread distribution of perfluoroalkyl acids from a military airport to groundwater, lakes, soils and fish. Chemosphere. 2015;129:39–45. https://doi.org/10.1016/j.chemosphere.2014.09.005.

    Article  CAS  Google Scholar 

  107. Anderson RH, Long GC, Porter RC, Anderson JK. Occurrence of select perfluoroalkyl substances at US Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties. Chemosphere. 2016;150:678–85. https://doi.org/10.1016/j.chemosphere.2016.01.014.

    Article  CAS  Google Scholar 

  108. Bräunig J, Baduel C, Barnes CM, Mueller JF. Leaching and bioavailability of selected perfluoroalkyl acids (PFAAs) from soil contaminated by firefighting activities. Sci Total Environ. 2019;646:471–9. https://doi.org/10.1016/j.scitotenv.2018.07.231.

    Article  CAS  Google Scholar 

  109. Høisæter Å, Pfaff A, Breedveld GD. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. J Contam Hydrol. 2019;222:112–22. https://doi.org/10.1016/j.jconhyd.2019.02.010.

    Article  CAS  Google Scholar 

  110. Senevirathna STMLD, Krishna KCB, Mahinroosta R, Sathasivan A. Comparative characterization of microbial communities that inhabit PFAS-rich contaminated sites: a case-control study. J Hazard Mater. 2022;423:126941, 2022/02/05/. https://doi.org/10.1016/j.jhazmat.2021.126941.

  111. • Li Y, Oliver DP, Kookana RS. A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs). Sci Total Environ. 2018;628:110–20. https://doi.org/10.1016/j.scitotenv.2018.01.167. This article thoroughly reviews the effect of the different physicochemical properties of soils and sediments on the sorption of PFAS.

    Article  CAS  Google Scholar 

  112. Zhi Y, Liu J. Sorption and desorption of anionic, cationic and zwitterionic polyfluoroalkyl substances by soil organic matter and pyrogenic carbonaceous materials. Chem Eng J. 2018;346:682–91. https://doi.org/10.1016/j.cej.2018.04.042.

    Article  CAS  Google Scholar 

  113. Pereira HC, Ullberg M, Kleja DB, Gustafsson JP, Ahrens L. Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon–effect of cation composition and pH. Chemosphere. 2018;207:183–91. https://doi.org/10.1016/j.chemosphere.2018.05.012.

    Article  CAS  Google Scholar 

  114. Mejia-Avendaño S, Zhi Y, Yan B, Liu J. Sorption of polyfluoroalkyl surfactants on surface soils: effect of molecular structures, soil properties, and solution chemistry. Environ Sci Technol. 2020;54(3):1513–21. https://doi.org/10.1021/acs.est.9b04989.

    Article  CAS  Google Scholar 

  115. Nguyen TMH, Bräunig J, Thompson K, Thompson J, Kabiri S, Navarro DA, Kookana RS, Grimison C, Barnes CM, Higgins CP. Influences of chemical properties, soil properties, and solution pH on soil–water partitioning coefficients of per-and polyfluoroalkyl substances (PFASs). Environ Sci Technol. 2020;54(24):15883–92. https://doi.org/10.1021/acs.est.0c05705.

    Article  CAS  Google Scholar 

  116. Du Z, Deng S, Bei Y, Huang Q, Wang B, Huang J, Yu G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. J Hazard Mater. 2014;274:443–54. https://doi.org/10.1016/j.jhazmat.2014.04.038.

    Article  CAS  Google Scholar 

  117. Cai W, Navarro DA, Du J, Ying G, Yang B, McLaughlin MJ, Kookana RS. Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces. Sci Total Environ. 2022;152975. https://doi.org/10.1016/j.scitotenv.2022.152975.

  118. Jeon J, Kannan K, Lim BJ, An KG, Kim SD. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles. J Environ Monit. 2011;13(6):1803–10.

    Article  CAS  Google Scholar 

  119. Goring CA. Physical aspects of soil in relation to the action of soil fungicides. Annu Rev Phytopathol. 1967;5(1):285–317. https://doi.org/10.1146/annurev.py.05.090167.001441.

    Article  CAS  Google Scholar 

  120. Lambert SM. Omega (. OMEGA.), a useful index of soil sorption equilibria. J Agricul Food Chem. 1968;16(2):340–343.

  121. Higgins CP, Luthy RG. Sorption of perfluorinated surfactants on sediments. Environ Sci Technol. 2006;40(23):7251–6. https://doi.org/10.1021/es061000n.

    Article  CAS  Google Scholar 

  122. Chen Y-C, Lo S-L, Li N-H, Lee Y-C, Kuo J. Sorption of perfluoroalkyl substances (PFASs) onto wetland soils. Desalin Water Treat. 2013;51(40–42):7469–75. https://doi.org/10.1080/19443994.2013.792145.

    Article  CAS  Google Scholar 

  123. You C, Jia C, Pan G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface. Environ Pollut. 2010;158(5):1343–7. https://doi.org/10.1016/j.envpol.2010.01.009.

    Article  CAS  Google Scholar 

  124. Chen H, Zhang C, Yu Y, Han J. Sorption of perfluorooctane sulfonate (PFOS) on marine sediments. Mar Pollut Bull. 2012;64(5):902–6. https://doi.org/10.1016/j.marpolbul.2012.03.012.

    Article  CAS  Google Scholar 

  125. Ahrens L, Yeung LW, Taniyasu S, Lam PK, Yamashita N. Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment. Chemosphere. 2011;85(5):731–7. https://doi.org/10.1016/j.chemosphere.2011.06.046.

    Article  CAS  Google Scholar 

  126. Anderson RH, Adamson DT, Stroo HF. Partitioning of poly-and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. J Contam Hydrol. 2019;220:59–65. https://doi.org/10.1016/j.jconhyd.2018.11.011.

    Article  CAS  Google Scholar 

  127. Pan G, You C. Sediment–water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River Estuary. Environ Pollut. 2010;158(5):1363–7. https://doi.org/10.1016/j.envpol.2010.01.011.

    Article  CAS  Google Scholar 

  128. Becker AM, Gerstmann S, Frank H. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river. Bayreuth, Germany, Environmental Pollution. 2008;156(3):818–20. https://doi.org/10.1016/j.envpol.2008.05.024.

    Article  CAS  Google Scholar 

  129. Zhu Z, Wang T, Wang P, Lu Y, Giesy JP. Perfluoroalkyl and polyfluoroalkyl substances in sediments from South Bohai coastal watersheds. China, Marine pollution bulletin. 2014;85(2):619–27. https://doi.org/10.1016/j.marpolbul.2013.12.042.

    Article  CAS  Google Scholar 

  130. Kwadijk C, Korytar P, Koelmans A. Distribution of perfluorinated compounds in aquatic systems in the Netherlands. Environ Sci Technol. 2010;44(10):3746–51. https://doi.org/10.1021/es100485e.

    Article  CAS  Google Scholar 

  131. Fabregat-Palau J, Vidal M, Rigol A. Modelling the sorption behaviour of perfluoroalkyl carboxylates and perfluoroalkane sulfonates in soils. Sci Total Environ. 2021;801:149343. https://doi.org/10.1016/j.scitotenv.2021.149343.

    Article  CAS  Google Scholar 

  132. Johnson RL, Anschutz AJ, Smolen JM, Simcik MF, Penn RL. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. J Chem Eng Data. 2007;52(4):1165–70. https://doi.org/10.1021/je060285g.

    Article  CAS  Google Scholar 

  133. Calvet R. Adsorption of organic chemicals in soils. Environ Health Perspect. 1989;83:145–77. https://doi.org/10.1289/ehp.8983145.

    Article  CAS  Google Scholar 

  134. Weber J, Miller C. Organic chemical movement over and through soil. Reactions and movement of organic chemicals in soils. 1989;22:305–34. https://doi.org/10.2136/sssaspecpub22.c12.

    Article  CAS  Google Scholar 

  135. Kah M, Brown CD. Adsorption of ionisable pesticides in soils. Rev Environ Contamin Toxic. 2006;149–217. https://doi.org/10.1007/978-0-387-32964-2_5.

  136. Li F, Fang X, Zhou Z, Liao X, Zou J, Yuan B, Sun W. Adsorption of perfluorinated acids onto soils: kinetics, isotherms, and influences of soil properties. Sci Total Environ. 2019;649:504–14. https://doi.org/10.1016/j.scitotenv.2018.08.209.

    Article  CAS  Google Scholar 

  137. Kwadijk C, Velzeboer I, Koelmans A. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments. Chemosphere. 2013;90(5):1631–6. https://doi.org/10.1016/j.chemosphere.2012.08.041.

    Article  CAS  Google Scholar 

  138. Milinovic J, Lacorte S, Vidal M, Rigol A. Sorption behaviour of perfluoroalkyl substances in soils. Sci Total Environ. 2015;511:63–71. https://doi.org/10.1016/j.scitotenv.2014.12.017.

    Article  CAS  Google Scholar 

  139. Barzen-Hanson KA, Davis SE, Kleber M, Field JA. Sorption of fluorotelomer sulfonates, fluorotelomer sulfonamido betaines, and a fluorotelomer sulfonamido amine in national foam aqueous film-forming foam to soil. Environ Sci Technol. 2017;51(21):12394–404. https://doi.org/10.1021/acs.est.7b03452.

    Article  CAS  Google Scholar 

  140. Atteia O, Del Campo Estrada E, Bertin H. Soil flushing: a review of the origin of efficiency variability. Rev Environ Sci Bio/Technol. 2013 Dec 12;(4):379-389. https://doi.org/10.1007/s11157-013-9316-0.

  141. Anderson WC. Soil washing/soil flushing. Am Acad Environ Eng Annapolis, MD. 1993.

  142. Di Palma L, Ferrantelli P, Merli C, Biancifiori F. Recovery of EDTA and metal precipitation from soil flushing solutions. J Hazard Mater. 2003;103(1–2):153–68. https://doi.org/10.1016/S0304-3894(03)00268-1.

    Article  CAS  Google Scholar 

  143. Wasay S, Barrington S, Tokunaga S. Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns. Water Air Soil Pollut. 2001;127(1):301–14. https://doi.org/10.1023/A:1005251915165.

    Article  CAS  Google Scholar 

  144. Arnon S, Ronen Z, Yakirevich A, Adar E. Evaluation of soil flushing potential for clean-up of desert soil contaminated by industrial wastewater. Chemosphere. 2006;62(1):17–25. https://doi.org/10.1016/j.chemosphere.2005.04.050.

    Article  CAS  Google Scholar 

  145. dos Santos EV, Souza F, Saez C, Cañizares P, Lanza MR, Martinez-Huitle CA, Rodrigo MA. Application of electrokinetic soil flushing to four herbicides: a comparison. Chemosphere. 2016;153:205–11. https://doi.org/10.1016/j.chemosphere.2016.03.047.

    Article  CAS  Google Scholar 

  146. Svab M, Kubal M, Müllerova M, Raschman R. Soil flushing by surfactant solution: pilot-scale demonstration of complete technology. J Hazard Mater. 2009;163(1):410–7. https://doi.org/10.1016/j.jhazmat.2008.06.116.

    Article  CAS  Google Scholar 

  147. Zhou Q, Sun F, Liu R. Joint chemical flushing of soils contaminated with petroleum hydrocarbons. Environ Int. 2005;31(6):835–9. https://doi.org/10.1016/j.envint.2005.05.039.

    Article  Google Scholar 

  148. Mousset E, Oturan MA, Van Hullebusch ED, Guibaud G, Esposito G. Soil washing/flushing treatments of organic pollutants enhanced by cyclodextrins and integrated treatments: state of the art. Crit Rev Environ Sci Technol. 2014;44(7):705–95. https://doi.org/10.1080/10643389.2012.741307.

    Article  CAS  Google Scholar 

  149. Boufadel MC, Ji W, Jayalakshmamma MP, Abou Khalil C, Abrams S, Zhao L, Wang A. Nonaqueous phase liquid removal by postconventional techniques. J Environ Eng. 2021;147(3):03120011. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001836.

  150. Jawitz JW, Sillan RK, Annable MD, Rao PSC, Warner K. In-situ alcohol flushing of a DNAPL source zone at a dry cleaner site. Environ Sci Technol. 2000;34(17):3722–9. https://doi.org/10.1021/es9913737.

    Article  CAS  Google Scholar 

  151. Zimmerman JB, Mihelcic JR, Smith AJ. Global stressors on water quality and quantity. ACS Publications. https://doi.org/10.1021/es0871457 (Accessed on 20 May 2022).

  152. Senevirathna S, Mahinroosta R, Li M, KrishnaPillai K. In situ soil flushing to remediate confined soil contaminated with PFOS-an innovative solution for emerging environmental issue. Chemosphere. 2021;262:127606. https://doi.org/10.1016/j.chemosphere.2020.127606.

    Article  CAS  Google Scholar 

  153. Tang J, Zhang Y, Zha Y, Li X, Fan S. Oxalate enhances desorption of perfluorooctane sulfonate from soils and sediments. Water Air Soil Pollut. 2017;228(12):1–11. https://doi.org/10.1007/s11270-017-3626-8.

    Article  CAS  Google Scholar 

  154. Shojaei M, Kumar N, Chaobol S, Wu K, Crimi M, Guelfo J. Enhanced recovery of per-and polyfluoroalkyl substances (PFASs) from impacted soils using heat activated persulfate. Environ Sci Technol. 2021;55(14):9805–16. https://doi.org/10.1021/acs.est.0c08069.

    Article  CAS  Google Scholar 

  155. Senevirathna L, Mahinroosta R, Li M, Shaeri S. Modified in-situ soil flushing to remediate PFAS contaminated soil–an innovative remediation approach, in International Conference on the "Challenges in Environmental Science and Engineering" (CESE-2019). 2019.

  156. Roy D, Kommalapati RR, Valsaraj KT, Constant WD. Soil flushing of residual transmission fluid: application of colloidal gas aphron suspensions and conventional surfactant solutions. Water Res. 1995;29(2):589–95. https://doi.org/10.1016/0043-1354(94)00171-3.

    Article  CAS  Google Scholar 

  157. Roy D, Kongara S, Valsaraj K. Application of surfactant solutions and colloidal gas aphron suspensions in flushing naphthalene from a contaminated soil matrix. J Hazard Mater. 1995;42(3):247–63. https://doi.org/10.1016/0304-3894(95)00018-P.

    Article  CAS  Google Scholar 

  158. Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater. 2016;306:149–74. https://doi.org/10.1016/j.jhazmat.2015.12.008.

    Article  CAS  Google Scholar 

  159. Ji W, Jayalakshmamma MP, Abou Khalil C, Zhao L, Boufadel M. Removal of hydrocarbon from soils possessing macro-heterogeneities using electrokinetics and surfactants. Chem Eng J Adv. 2020;(4):100030. https://doi.org/10.1016/j.ceja.2020.100030.

  160. Jayalakshmamma MP, Ji W, Abou Khalil C, Marhaba TF, Abrams S, Lee K, Zhang H, Boufadel M. Removal of hydrocarbons from heterogenous soil using electrokinetics and surfactants. Environ Challenges. 2021;4:100071. https://doi.org/10.1016/j.envc.2021.100071.

  161. Ji W, Abou Khalil C, Jayalakshmamma MP, Zhao L, Boufadel MC. Boufadel, Behavior of surfactants and surfactant blends in soils during remediation: a review. Environ Challenges. 2021;2:100007. https://doi.org/10.1016/j.envc.2020.100007.

  162. Pan G, Jia C, Zhao D, You C, Chen H, Jiang G. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environ Pollut. 2009;157(1):325–30. https://doi.org/10.1016/j.envpol.2008.06.035.

    Article  CAS  Google Scholar 

  163. Guelfo JL, Higgins CP. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites. Environ Sci Technol. 2013;47(9):4164–71. https://doi.org/10.1021/es3048043.

    Article  CAS  Google Scholar 

  164. Zhang W, Liang Y. Changing bioavailability of per-and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization. Environ Pollut. 2022;119724. https://doi.org/10.1016/j.envpol.2022.119724.

  165. Schröder HF. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. J Chromatogr A. 2003;1020(1):131–51. https://doi.org/10.1016/S0021-9673(03)00936-1.

    Article  CAS  Google Scholar 

  166. Chen H-Y, Liao W, Wu B-Z, Nian H, Chiu K, Yak H-K. Removing perfluorooctane sulfonate and perfluorooctanoic acid from solid matrices, paper, fabrics, and sand by mineral acid suppression and supercritical carbon dioxide extraction. Chemosphere. 2012;89(2):179–84. https://doi.org/10.1016/j.chemosphere.2012.06.003.

    Article  CAS  Google Scholar 

  167. Enevoldsen R, Juhler RK. Perfluorinated compounds (PFCs) in groundwater and aqueous soil extracts: using inline SPE-LC-MS/MS for screening and sorption characterisation of perfluorooctane sulphonate and related compounds. Anal Bioanal Chem. 2010;398(3):1161–72. https://doi.org/10.1007/s00216-010-4066-0.

    Article  CAS  Google Scholar 

  168. Zhao L, Zhu L, Yang L, Liu Z, Zhang Y. Distribution and desorption of perfluorinated compounds in fractionated sediments. Chemosphere. 2012;88(11):1390–7. https://doi.org/10.1016/j.chemosphere.2012.05.062.

    Article  CAS  Google Scholar 

  169. Milinovic J, Lacorte S, Rigol A, Vidal M. Sorption of perfluoroalkyl substances in sewage sludge. Environ Sci Pollut Res. 2016;23(9):8339–48. https://doi.org/10.1007/s11356-015-6019-9.

    Article  CAS  Google Scholar 

  170. Munoz G, Ray P, Mejia-Avendaño S, Duy SV, Do DT, Liu J, Sauvé S. Optimization of extraction methods for comprehensive profiling of perfluoroalkyl and polyfluoroalkyl substances in firefighting foam impacted soils. Analytica Chimica Acta. 2018;1034:74–84. https://doi.org/10.1016/j.aca.2018.06.046.

  171. Shojaei M, Guelfo J, Crimi M. Enhanced total PFAS recovery from Afff-impacted soils using in situ pre-treatment, in SETAC North America 41st Annual Meeting. 2021: SETAC.

  172. Griffiths RA. Soil-washing technology and practice. J Hazard Mater. 1995;40(2):175–89. https://doi.org/10.1016/0304-3894(94)00064-N.

    Article  CAS  Google Scholar 

  173. Mulligan C, Yong R, Gibbs B. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol. 2001;60(1–4):193–207. https://doi.org/10.1016/S0013-7952(00)00101-0.

    Article  Google Scholar 

  174. Munoz G, Ray P, Mejia-Avendaño S, Duy SV, Do DT, Liu J, Sauvé S. Optimization of extraction methods for comprehensive profiling of perfluoroalkyl and polyfluoroalkyl substances in firefighting foam impacted soils. Anal Chim Acta. 2018;1034:74–84. https://doi.org/10.1016/j.aca.2018.06.046.

    Article  CAS  Google Scholar 

  175. Senevirathna S, Tanaka S, Fujii S, Kunacheva C, Harada H, Shivakoti BR, Okamoto R. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers. Chemosphere. 2010;80(6):647–51. https://doi.org/10.1016/j.chemosphere.2010.04.053.

    Article  CAS  Google Scholar 

  176. Deng S, Nie Y, Du Z, Huang Q, Meng P, Wang B, Huang J, Yu G. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J Hazard Mater. 2015;282:150–7. https://doi.org/10.1016/j.jhazmat.2014.03.045.

    Article  CAS  Google Scholar 

  177. Hale SE, Hans Peter HA, Slinde G, Wade E, Bjorseth K, Breedveld G, Hansen M, Straith BF, Moe K, Jartun M, Krokstad J, Fikse A, Hoisaeter A. PFAS pollution at airport sites: point and diffuse sources, fate & transport and remediation. 2018. https://www.ngi.no/download/file/14966 (Accessed on 22 June 2022).

  178. Gellrich V, Stahl T, Knepper T. Behavior of perfluorinated compounds in soils during leaching experiments. Chemosphere. 2012;87(9):1052–6. https://doi.org/10.1016/j.chemosphere.2012.02.011.

    Article  CAS  Google Scholar 

  179. Swedish-EPA. Guidance on Risk Assessment and Remediation of PFAS Pollution. https://scholar.google.com/scholar_lookup?title=Guidance%20on%20Risk%20Assessment%20and%20Remediation%20of%20PFAS%20Pollution%20(in%20Swedish).%20Draft%20Version&author=Swedish%20EPA&publication_year=2018 (Accessed on 25 May, 2022).

  180. Grimison C, Brookman C, Hunt J, Lucas J. Remediation of PFAS-related impacts ongoing scrutiny and review. Ventia Submission - PFAS Subcommittee of the Joint Standing Committee on Foreign Affairs, Defence and Trade. https://www.enviro.wiki/images/2/2d/Grimison2020.pdf (Accessed on 12 April, 2022).

  181. Nguyen TMH, Bräunig J, Kookana RS, Kaserzon SL, Knight ER, Vo HNP, Kabiri S, Navarro DA, Grimison C, Riddell N. Assessment of mobilization potential of per-and polyfluoroalkyl substances for soil remediation. Environ Sci Technol. 2022. https://doi.org/10.1021/acs.est.2c00401.

    Article  Google Scholar 

  182. Pang H, Dorian B, Gao L, Xie Z, Cran M, Muthukumaran S, Sidiroglou F, Gray S, Zhang J. Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soil using gas fractionation enhanced technology. Sci Total Environ. 2022;827:154310. https://doi.org/10.1016/j.scitotenv.2022.154310.

    Article  CAS  Google Scholar 

  183. Quinnan J, Morrell C, Nagle N, Maynard KG. Ex situ soil washing to remove PFAS adsorbed to soils from source zones. Remediat J. 2022;32(3):151–66. https://doi.org/10.1002/rem.21727.

    Article  Google Scholar 

  184. OPEC Systems. Downhole foam fractionation (DFF) solutions. https://opecsystems.com/shop/category/pfas-solutionsAccessed (Accessed on 14 March, 2022).

  185. Buckley T, Xu X, Rudolph V, Firouzi M, Shukla P. Review of foam fractionation as a water treatment technology. Sep Sci Technol. 2022;57(6):929–58. https://doi.org/10.1080/01496395.2021.1946698.

    Article  CAS  Google Scholar 

  186. Niven R, Khalili N, Pashley R, Taylor M, Strezov V, Wilson S, Murphy P, Phillips S. Fluidisation. Australian Reserach Council (ARC), Scheme Round Statistics for Approved Proposals - Special Research Initiatives 2018 Round 1. https://inis.iaea.org/search/search.aspx?orig_q=RN:52090961 (Accessed on 13 May 2022).

  187. Trapp S, Karlson U. Aspects of phytoremediation of organic pollutants. J Soils Sediments. 2001;1(1):37–43. https://doi.org/10.1007/BF02986468.

    Article  CAS  Google Scholar 

  188. Wuana R, Okieimen F. Phytoremediation potential of maize (Zea mays L.). A review, African J Gen Agri 2010;6(4):275–287.

  189. Shah V, Daverey A. Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov. 2020;18:100774. https://doi.org/10.1016/j.eti.2020.100774.

    Article  Google Scholar 

  190. He Y, Langenhoff AA, Sutton NB, Rijnaarts HH, Blokland MH, Chen F, Huber C, Schröder P. Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation. Environ Sci Technol. 2017;51(8):4576–84. https://doi.org/10.1021/acs.est.7b00458.

    Article  CAS  Google Scholar 

  191. Gobelius L, Lewis J, Ahrens L. Plant uptake of per-and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environ Sci Technol. 2017;51(21):12602–10. https://doi.org/10.1021/acs.est.7b02926.

    Article  CAS  Google Scholar 

  192. Zhang Q, Kong W, Wei L, Wang Y, Luo Y, Wang P, Liu J, Schnoor JL, Jiang G. Uptake, phytovolatilization, and interconversion of 2, 4-dibromophenol and 2, 4-dibromoanisole in rice plants. Environ Int. 2020;142:105888. https://doi.org/10.1016/j.envint.2020.105888.

    Article  CAS  Google Scholar 

  193. Mayakaduwage S, Ekanayake A, Kurwadkar S, Rajapaksha AU, Vithanage M. Phytoremediation prospects of per-and polyfluoroalkyl substances: a review. Environ Res. 2022;212: 113311. https://doi.org/10.1016/j.envres.2022.113311.

    Article  CAS  Google Scholar 

  194. Stahl T, Riebe RA, Falk S, Failing K, Brunn H. Long-term lysimeter experiment to investigate the leaching of perfluoroalkyl substances (PFASs) and the carry-over from soil to plants: results of a pilot study. J Agric Food Chem. 2013;61(8):1784–93. https://doi.org/10.1021/jf305003h.

    Article  CAS  Google Scholar 

  195. Stahl T, Heyn J, Thiele H, Hüther J, Failing K, Georgii S, Brunn H. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch Environ Contam Toxicol. 2009;57(2):289–98. https://doi.org/10.1007/s00244-008-9272-9.

    Article  CAS  Google Scholar 

  196. Wang T-T, Ying G-G, He L-Y, Liu Y-S, Zhao J-L. Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale. Sci Total Environ. 2020;733:139383. https://doi.org/10.1016/j.scitotenv.2020.139383.

    Article  CAS  Google Scholar 

  197. Blaine AC, Rich CD, Sedlacko EM, Hyland KC, Stushnoff C, Dickenson ER, Higgins CP. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ Sci Technol. 2014;48(24):14361–8. https://doi.org/10.1021/es504150h.

    Article  CAS  Google Scholar 

  198. Dettenmaier EM, Doucette WJ, Bugbee B. Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol. 2009;43(2):324–9. https://doi.org/10.1021/es801751x.

    Article  CAS  Google Scholar 

  199. Collins C, Fryer M, Grosso A. Plant uptake of non-ionic organic chemicals. Environ Sci Technol. 2006;40(1):45–52. https://doi.org/10.1021/es0508166.

    Article  CAS  Google Scholar 

  200. Paterson S, Mackay D, McFarlane C. A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol. 1994;28(13):2259–66.

    Article  CAS  Google Scholar 

  201. Su YH, Liu T, Liang YC. Transport via xylem of trichloroethylene in wheat, corn, and tomato seedlings. J Hazard Mater. 2010;182(1–3):472–6. https://doi.org/10.1016/j.jhazmat.2010.06.055.

    Article  CAS  Google Scholar 

  202. Wen B, Li L, Liu Y, Zhang H, Hu X, Shan XQ, Zhang S. Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. cv. TY2). Plant and Soil. 2013;370(1):345-54. https://doi.org/10.1007/s11104-013-1637-9.

  203. Tian Y, Yao Y, Chang S, Zhao Z, Zhao Y, Yuan X, Wu F, Sun H. Occurrence and phase distribution of neutral and ionizable per-and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: a case study in Tianjin. China, Environmental science & technology. 2018;52(3):1301–10. https://doi.org/10.1021/acs.est.7b05385.

    Article  CAS  Google Scholar 

  204. Huang D, Xiao R, Du L, Zhang G, Yin L, Deng R, Wang G. Phytoremediation of poly-and perfluoroalkyl substances: a review on aquatic plants, influencing factors, and phytotoxicity. J Hazard Mater. 2021;418:126314. https://doi.org/10.1016/j.jhazmat.2021.126314.

    Article  CAS  Google Scholar 

  205. Lesmeister L, Lange FT, Breuer J, Biegel-Engler A, Giese E, Scheurer M. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants–a review. Sci Total Environ. 2021;766:142640. https://doi.org/10.1016/j.scitotenv.2020.142640.

    Article  CAS  Google Scholar 

  206. Zhang W, Cao H, Mahadevan Subramanya S, Savage P, Liang Y. Destruction of perfluoroalkyl acids accumulated in Typha latifolia through hydrothermal liquefaction. ACS Sustainable Chemistry & Engineering. 2020;8(25):9257-9262. https://doi.org/10.1021/acssuschemeng.0c03249.

  207. Zhang D, He Q, Wang M, Zhang W, Liang Y. Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar. Environ Technol. 2021;42(12):1798–809.

    Article  Google Scholar 

  208. Ding G, Peijnenburg WJ. Physicochemical properties and aquatic toxicity of poly-and perfluorinated compounds. Crit Rev Environ Sci Technol. 2013;43(6):598–678. https://doi.org/10.1080/10643389.2011.627016.

    Article  CAS  Google Scholar 

  209. Xiao F, Sasi PC, Yao B, Kubátová A, Golovko SA, Golovko MY, Soli D. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon. Environ Sci Technol Lett. 2020;7(5):343–50. https://doi.org/10.1021/acs.estlett.0c00114.

    Article  CAS  Google Scholar 

  210. Wen B, Li L, Zhang H, Ma Y, Shan XQ, Zhang S. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ Pollut. 2014;184:547-54. https://doi.org/10.1016/j.envpol.2013.09.040.

  211. Lee H, Tevlin AG, Mabury SA, Mabury SA. Fate of polyfluoroalkyl phosphate diesters and their metabolites in biosolids-applied soil: biodegradation and plant uptake in greenhouse and field experiments. Environ Sci Technol. 2014;48(1):340–9. https://doi.org/10.1021/es403949z.

    Article  CAS  Google Scholar 

  212. Bizkarguenaga E, Zabaleta I, Mijangos L, Iparraguirre A, Fernández LA, Prieto A, Zuloaga O. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil. Sci Total Environ. 2016;571:444-451 2016/11/15/. https://doi.org/10.1016/j.scitotenv.2016.07.010.

  213. Kim H, Ekpe OD, Lee J-H, Kim D-H, Oh J-E. Field-scale evaluation of the uptake of perfluoroalkyl substances from soil by rice in paddy fields in South Korea. Sci Total Environ. 2019;671:714–21. https://doi.org/10.1016/j.scitotenv.2019.03.240.

    Article  CAS  Google Scholar 

  214. Huff D, Morris L, Wade N. Final report: phytoremediation of perfluoroalkyl substances (PFAS) via phytoextraction. EPA Contract Number: 68HE0D18C0018. https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/10909/report/F (Accessed).

  215. Xiang L, Chen X-T, Yu P-F, Li X-H, Zhao H-M, Feng N-X, Li Y-W, Li H, Cai Q-Y, Mo C-H. Oxalic acid in root exudates enhances accumulation of perfluorooctanoic acid in lettuce. Environ Sci Technol. 2020;54(20):13046–55. https://doi.org/10.1021/acs.est.0c04124.

    Article  CAS  Google Scholar 

  216. Gredelj A, Nicoletto C, Valsecchi S, Ferrario C, Polesello S, Lava R, Zanon F, Barausse A, Palmeri L, Guidolin L, Bonato M. Uptake and translocation of perfluoroalkyl acids (PFAA) in red chicory (Cichorium intybus L.) under various treatments with pre-contaminated soil and irrigation water. Sci Total Environ. 2020;708:134766. https://doi.org/10.1016/j.scitotenv.2019.134766.

  217. Muschket M, Keltsch N, Paschke H, Reemtsma T, Berger U. Determination of transformation products of per- and polyfluoroalkyl substances at trace levels in agricultural plants. J Chromatography A. 2020;1625:461271, 2020/08/16/. https://doi.org/10.1016/j.chroma.2020.461271.

  218. Huff DK, Morris LA, Sutter L, Costanza J, Pennell KD. Accumulation of six PFAS compounds by woody and herbaceous plants: potential for phytoextraction. Int J Phytorem. 2020;22(14):1538–50. https://doi.org/10.1080/15226514.2020.1786004.

    Article  CAS  Google Scholar 

  219. Nason SL, Stanley CJ, PeterPaul CE, Blumenthal MF, Zuverza-Mena N, Silliboy RJ. A community based PFAS phytoremediation project at the former Loring Airforce Base. Iscience. 2021;24(7).

  220. Wu T-C. Phytoremediation potential for poly-and perfluoroalkyl substances (PFASs) using various plant species. https://stud.epsilon.slu.se/17146/ (Accessed).

  221. Awad J, Brunetti G, Juhasz A, Williams M, Navarro D, Drigo B, Bougoure J, Vanderzalm J, Beecham S. Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. J Hazard Mater. 2022;429: 128326. https://doi.org/10.1016/j.jhazmat.2022.128326.

    Article  CAS  Google Scholar 

  222. Colomer-Vidal P, Jiang L, Mei W, Luo C, Lacorte S, Rigol A, Zhang G. Plant uptake of perfluoroalkyl substances in freshwater environments (Dongzhulong and Xiaoqing Rivers, China). J Hazard Mater. 2022;421:126768, 2022/01/05/. https://doi.org/10.1016/j.jhazmat.2021.126768.

  223. Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R. Electrokinetic remediation: basics and technology status. J Hazard Mater. 1995;40(2):117–37. https://doi.org/10.1016/0304-3894(94)00066-P.

    Article  CAS  Google Scholar 

  224. Baraud F, Tellier S, Astruc M. Ion velocity in soil solution during electrokinetic remediation. J Hazard Mater. 1997;56(3):315–32. https://doi.org/10.1016/S0304-3894(97)00073-3.

    Article  CAS  Google Scholar 

  225. Kim B-K, Baek K, Ko S-H, Yang J-W. Research and field experiences on electrokinetic remediation in South Korea. Sep Purif Technol. 2011;79(2):116–23. https://doi.org/10.1016/j.seppur.2011.03.002.

    Article  CAS  Google Scholar 

  226. Kim W-S, Park G-Y, Kim D-H, Jung H-B, Ko S-H, Baek K. In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: influence of electrode configuration. Electrochim Acta. 2012;86:89–95. https://doi.org/10.1016/j.electacta.2012.02.078.

    Article  CAS  Google Scholar 

  227. Virkutyte J, Sillanpää M, Latostenmaa P. Electrokinetic soil remediation—critical overview. Sci Total Environ. 2002;289(1–3):97–121. https://doi.org/10.1016/S0048-9697(01)01027-0.

    Article  CAS  Google Scholar 

  228. Reddy KR. Technical challenges to in-situ remediation of polluted sites. Geotech Geol Eng. 2010;28(3):211–21. https://doi.org/10.1007/s10706-008-9235-y.

    Article  Google Scholar 

  229. Reddy KR, Chinthamreddy S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Manage. 1999;19(4):269–82. https://doi.org/10.1016/S0956-053X(99)00085-9.

    Article  CAS  Google Scholar 

  230. Vocciante M, Dovì VG, Ferro S. Sustainability in electroKinetic remediation processes: a critical analysis. Sustainability. 2021;13(2):770. https://doi.org/10.3390/su13020770.

    Article  Google Scholar 

  231. Wen D, Fu R, Li Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review. J Hazard Mater. 2021;401:123345. https://doi.org/10.1016/j.jhazmat.2020.123345.

    Article  CAS  Google Scholar 

  232. Fan G, Wang Y, Fang G, Zhu X, Zhou D. Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments. Environ Sci Process Impacts. 2016;18(9):1140–56. https://doi.org/10.1039/C6EM00320F.

    Article  CAS  Google Scholar 

  233. Jensen PE, Ahring BK, Ottosen LM. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology. 2007;82(10):920–8. https://doi.org/10.1002/jctb.1762.

    Article  CAS  Google Scholar 

  234. Lu P, Feng Q, Meng Q, Yuan T. Electrokinetic remediation of chromium-and cadmium-contaminated soil from abandoned industrial site. Sep Purif Technol. 2012;98:216–20. https://doi.org/10.1016/j.seppur.2012.07.010.

    Article  CAS  Google Scholar 

  235. Earnden L, Marangoni AG, Gregori S, Paschos A, Pensini E. Zein-bonded graphene and biosurfactants enable the electrokinetic clean-up of hydrocarbons. Langmuir. 2021;37(37):11153–69. https://doi.org/10.1021/acs.langmuir.1c02018.

    Article  CAS  Google Scholar 

  236. Han H, Lee Y-J, Kim S-H, Yang J-W. Electrokinetic remediation of soil contaminated with diesel oil using EDTA–cosolvent solutions. Sep Sci Technol. 2009;44(10):2437–54. https://doi.org/10.1080/01496390902983794.

    Article  CAS  Google Scholar 

  237. Ahrens L, Harner T, Shoeib M, Lane DA, Murphy JG. Improved characterization of gas–particle partitioning for per-and polyfluoroalkyl substances in the atmosphere using annular diffusion denuder samplers. Environ Sci Technol. 2012;46(13):7199–206. https://doi.org/10.1021/es300898s.

    Article  CAS  Google Scholar 

  238. Sörengård M, Niarchos G, Jensen PE, Ahrens L. Electrodialytic per-and polyfluoroalkyl substances (PFASs) removal mechanism for contaminated soil. Chemosphere. 2019;232:224–31. https://doi.org/10.1016/j.chemosphere.2019.05.088.

  239. Sörengård M, Ahrens L, Alygizakis N, Jensen PE, Gago-Ferrero P. Non-target and suspect screening strategies for electrodialytic soil remediation evaluation: assessing changes in the molecular fingerprints and per-and polyfluoroalkyl substances (PFASs). J Environ Chem Eng. 2020;8(6):104437. https://doi.org/10.1016/j.jece.2020.104437.

    Article  CAS  Google Scholar 

  240. Niarchos G, Sörengård M, Fagerlund F, Ahrens L. Electrokinetic remediation for removal of per-and polyfluoroalkyl substances (PFASs) from contaminated soil. Chemosphere. 2021;133041. https://doi.org/10.1016/j.chemosphere.2021.133041.

  241. Hou J, Li G, Liu M, Chen L, Yao Y, Fallgren PH, Jin S. Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil. Chemosphere. 2022;287:132205. https://doi.org/10.1016/j.chemosphere.2021.132205.

    Article  CAS  Google Scholar 

  242. Liu Z, Tran K-Q. A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol Environ Saf. 2021;226:112821. https://doi.org/10.1016/j.ecoenv.2021.112821.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Charbel Abou-Khalil: writing—original draft, data curation, investigation, visualization. Dibyendu Sarkar: writing—review and editing. Pamela Braykaa: investigation. Michel C. Boufadel: supervision, writing—review and editing.

Corresponding author

Correspondence to Michel C. Boufadel.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sediment Pollution

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou-Khalil, C., Sarkar, D., Braykaa, P. et al. Mobilization of Per- and Polyfluoroalkyl Substances (PFAS) in Soils: A Review. Curr Pollution Rep 8, 422–444 (2022). https://doi.org/10.1007/s40726-022-00241-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00241-8

Keywords

Navigation