Skip to main content
Log in

Mineralization of high concentrations of the endocrine disruptor dibutyl phthalate by Fusarium culmorum

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Dibutyl phthalate (DBP) is a widely used plasticizer, whose presence in the environment as a pollutant raises concern because of its endocrine-disrupting toxicity. Growth kinetics, glucose uptake, biodegradation constant of DBP (k), half-life of DBP biodegradation (t1/2) and percentage of removal efficiency (%E) were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DBP (500 and 1000 mg/l). Intermediate compounds of biodegraded DBP were identified by GC–MS and a novel DBP biodegradation pathway was proposed on the basis of the intermolecular flow of electrons of the intermediates identified using quantum chemical modeling. F. culmorum degraded 99% of both 1000 and 500 mg of DBP/l after an incubation period of 168 and 228 h, respectively. %E was 99.5 and 99.3 for 1000 and 500 mg of DBP/l, respectively. The k was 0.0164 and 0.0231 h−1 for 500 and 1000 mg of DBP/l, respectively. DBP was fully metabolized to fumaric and malic acids, which are compounds that enter into the Krebs cycle. F. culmorum has a promising ability for bioremediation of environments polluted with DBP because it efficiently degrades DBP and uses high concentrations of this compound as carbon and energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Alvarado Y, Báez-Sánchez MR, Martínez-Carrera D, Ahuactzin-Pérez M, Cuamatzi-Muñoz M, Sánchez C (2015) Mycelial growth and enzymatic activities of fungi isolated from recycled paper wastes grown on di (2-ethylhexyl) phthalate. Pol J Environ Stud 24:1897–1902

    Article  CAS  Google Scholar 

  • Ahuactzin-Pérez M, Torres JL, Rodríguez-Pastrana BR, Soriano-Santos J, Díaz-Godínez G, Díaz R, Tlecuitl-Beristain S, Sánchez C (2014) Fungal biodegradation of dibutyl phthalate and toxicity of its breakdown products on the basis of fungal and bacterial growth. World J Microbiol Biotechnol 30:2811–2819

    Article  Google Scholar 

  • Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, González-Pérez M, Gutiérrez-Ruíz MC, Sánchez C (2016) Degradation of di (2-ethyl hexyl) phthalate by Fusarium culmorum: kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modeling. Sci Total Environ 566–567:1186–1193

    Article  Google Scholar 

  • Benjamin S, Pradeep S, Josh MKS, Kumar S, Masai E (2015) A monograph on the remediation of hazardous phthalates. J Hazard Mater 298:58–72

    Article  CAS  Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2012) Microbial population associated with plastic degradation. Sci Rep 1(5):272–275

    Google Scholar 

  • Bouchiat R, Veignie E, Grizard D, Soebert C, Vigier M, Rafin C (2015) Ability of filamentous fungi to degrade four emergent water priority pollutants. Desalin Water Treat 57:1–7

    Google Scholar 

  • Canavati-Alatorre MS, Águila I, Barraza-Soltero IK, Castillón E, Correa-Barrón AL, Sánchez-López E, Conde-Ávila V, González-Márquez A, Méndez-Iturbide D, Ruvalcaba D, Sánchez C (2016) Growth and cutinase activity of Fusarium culmorum grown in solid-state fermentation. Mex J Biotechnol 1(2):8–19

  • Chen X, Xu S, Tan T, Lee ST, Cheng SH, Lee FWF, Xu SJL, Ho KC (2014) Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int J Environ Res Public Health 11:3156–3168

    Article  Google Scholar 

  • Chhaya U, Gupte A (2013) Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of bisphenol A using reverse micelles system. J Hazard Mater 254–255:149–156

    Article  Google Scholar 

  • Córdoba-Sosa G, Torres JL, Ahuactzin-Pérez M, Díaz-Godínez G, Díaz R, Sánchez C (2014) Growth of Pleurotus ostreatus ATCC 3526 in different concentrations of di (2-ethylhexyl) phthalate in submerged fermentation. JCBPSC 4:96–103

    Google Scholar 

  • ECB (2003) European Chemicals Bureau, Summary risk assessment report (RAR 003) on dibutyl phthalate (DBP). http://www.greenfacts.org/en/dbp-dibutyl-phthalate/. Accessed 10 Jun 2016

  • Fang CR, Yao J, Zheng YG, Jiang CJ, Hu LF, Wu Y, Dong-Sheng S (2010) Dibutyl phthalate degradation by Enterobacter sp. T5 isolated from municipal solid waste in landfill bioreactor. Int Biodeterior Biodegrad 64:442–446

    Article  CAS  Google Scholar 

  • Gao J, Chi J (2015) Biodegradation of phthalate acid esters by different marine microalgal species. Mar Pollut Bull 99(1–2):70–75

    Article  CAS  Google Scholar 

  • Gao DW, Wen ZD (2016) Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541:986–1001

    Article  CAS  Google Scholar 

  • González-Pérez M (2015) Methyl chloride vs ethyl chloride: a demonstration of quantum chemical theory in accordance with experimental chemical. IJAST 5:11–14

    Google Scholar 

  • Green Facts (2008) Facts on health and the environment. http://www.greenfacts.org/en/dehp-dietylhexyl-phthalate/l-2/3-effects-environment.htm#3. Accessed 28 Jan 2007

  • Hu J, Yang Q, Wang JL (2015) Biodegradation of di-n-butyl phthalate in sequencing batch reactor bioaugmented with Micrococcus sp. and the bacterial community analysis. Int J Environ Sci Technol 12:2819–2828

    Article  CAS  Google Scholar 

  • Jin D, Kong X, Liu H, Wang X, Deng Y, Jia M, Xiangyang Y (2016) Characterization and genomic analysis of a highly efficient dibutyl phthalate-degrading bacterium Gordonia sp. strain QH-12. Int J Mol Sci 17(7):1012–1022

    Article  Google Scholar 

  • Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism. Chem Eng J 125:59–66

    Article  CAS  Google Scholar 

  • Kim YH, Seo HS, Min J, Kim YC, Ban YH, Han KY, Park JS, Bae KD, Gu MB, Lee J (2007) Enhanced degradation and reduction of toxicity of di 2-ethylhexyl phthalate by Fusarium oxysporum f. sp. pisi cutinase. J Appl Microbiol 102:221–228

    Article  CAS  Google Scholar 

  • Kumar V, Maitra SS (2016) Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway. 3 Biotech 6:200–212

    Article  CAS  Google Scholar 

  • Lee SM, Lee JW, Koo BW, Kim MK, Choi DH, Choi IG (2007) Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnol Bioeng 97:1516–1522

    Article  CAS  Google Scholar 

  • Liang DW, Zhang T, Fang HHP, He J (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80:183–198

    Article  CAS  Google Scholar 

  • Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B 364:2097–2113

    Article  CAS  Google Scholar 

  • Meng X, Niu G, Yang W, Cao X (2015) Di (2-ethylhexyl) phthalate biodegradation and denitrification by a Pseudoxanthomonas sp. strain. Bioresour Technol 180:356–359

    Article  CAS  Google Scholar 

  • Merz KM (2014) Using quantum mechanical approaches to study biological systems. Acc Chem Res 47:2804–2811

    Article  CAS  Google Scholar 

  • Muneer M, Theurich J, Bahnemann D (2001) Titanium dioxide mediated photocatalytic degradation of 1,2-diethyl phthalate. J Photochem Photobiol A 143:213–219

    Article  CAS  Google Scholar 

  • Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A (2012) Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol 57:221–227

    Article  CAS  Google Scholar 

  • Odunola OA, Semire B (2007) Conformational analysis (semi-empirical PM3) and electronic properties of functionalized oligo (hexylpyrroles). Eur J Chem 4:363–371

    CAS  Google Scholar 

  • Patil NK, Kundapur R, Shouche YS, Karegoudar TB (2006) Degradation of a plasticizer, di n-butyl phthalate by Delfia sp. TBKNP-05. Curr Microbiol 52(5):369–374

    Article  CAS  Google Scholar 

  • Pradeep S, Benjamin S (2012) Mycelial fungi completely remediate di (2-ethylhexyl) phthalate, the hazardous plasticizer in PVC blood storage bag. J Hazard Mater 235–236:69–77

    Article  Google Scholar 

  • Pradeep S, Faseela P, Sarath JMK, Balachandran S, Sudha-Devi R, Benjamin S (2013) Fungal biodegradation of phthalate plasticizer in situ. Biodegradation 24:257–267

    Article  CAS  Google Scholar 

  • Prasad B, Suresh S (2012) Biodegradation of dimethyl phthalate, dibutyl phthalate and their mixture by Variovorax sp. Int J Environ Sci Dev 3:283–288

    Article  CAS  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353

    Article  Google Scholar 

  • Ren L, Jia Y, Ruth N, Qiao C, Wang J, Zhao B, Yan Y (2016) Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6829-4

    Google Scholar 

  • Sánchez C, Téllez-Téllez M, Díaz G, Moore D (2004) Simple staining detects ultrastructural and biochemical differentiation of vegetative hyphae and fruit body initials in colonies of Pleurotus pulmonarius. Lett Appl Microbiol 38(6):483–487

    Article  Google Scholar 

  • Schwalb MN (1978) Regulation of fruiting. In: Schwalb MN, Miles PG (eds) Genetics and morphogenesis in the basidiomycetes. Academic Press, New York

    Google Scholar 

  • Suárez-Segundo JL, Vázquez-López D, Torres-García JL, Ahuactzin-Pérez M, Montiel-Martínez N, Tlecuitl-Beristain S, Sánchez C (2013) Growth of colonies and hyphal ultrastructure of filamentous fungi grown on dibutyl phthalate and di (2-ethylhexyl) phthalate. Rev Mex Ing Quim 2:499–504

    Google Scholar 

  • Tang WJ, Zhang LS, Fang Y, Zhou Y, Ye BC (2016) Biodegradation of phthalate esters by newly isolated Rhizobium sp. LMB-1 and its biochemical pathway of di-n-butyl phthalate. J Appl Microbiol 121(1):177–186

    Article  CAS  Google Scholar 

  • Wackett LP (2014) The metabolic pathways of biodegradation. In: Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F (eds) The prokaryotes: applied bacteriology and biotechnology. Springer, Berlin, pp 383–393. https://doi.org/10.1007/978-3-642-31331-8_76

  • Wu XL, Wang YY, Liang RX, Dai QY, Jin DC, Chao WL (2011) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Agrobacterium sp. and the biochemical pathway. Process Biochem 46:1090–1094

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu JD (2005) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1. Int Biodeterior Biodegrad 55:9–15

    Article  CAS  Google Scholar 

  • Xu N, Chen PY, Liu L, Zeng YQ, Zhou HX, Li S (2014) Effects of combined exposure to 17a-ethynylestradiol and dibutyl phthalate on the growth and reproduction of adult male zebrafish (Danio rerio). Ecotoxicol Environ Saf 107:61–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Mexican Council for Science and Technology (CONACyT) for providing a doctoral scholarship (no. 351476) to Miriam Ahuactzin-Pérez.

Author information

Authors and Affiliations

Authors

Contributions

MA-P; did the experimental work (Ph.D. thesis). ST-B and ES-J; drew the DBP biodegradation pathway. JG-D; did the GC–MS analysis. MG-P; did the quantum chemical studies. MCG-R; co-supervised MAP Ph.D. thesis and checked the MS. CS; co-supervised MAP Ph.D. thesis and wrote the MS.

Corresponding author

Correspondence to Carmen Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J. et al. Mineralization of high concentrations of the endocrine disruptor dibutyl phthalate by Fusarium culmorum. 3 Biotech 8, 42 (2018). https://doi.org/10.1007/s13205-017-1065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-1065-2

Keywords

Navigation