Skip to main content
Log in

A Simple Model for Determining Reference Evapotranspiration Using NOAA Satellite Data: a Case Study

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

Reference evapotranspiration (ET0) is required to determine crop water requirements and irrigation scheduling. Many equations have been presented for determining ET0 using meteorological data, but in most of these equations weather stations are located in arid lands far away from agricultural areas, and therefore, the data are not valid for estimating ET0. Satellite images obtain data from vast agricultural areas. In this study, the FAO-56 Penman–Monteith equation was changed to a simple linear equation with three components, and for each component, a linear regression equation was fitted to NOAA satellite data. To establish regression models and their validity, 297 NOAA satellite images over 10 years (1999 to 2008) were used. The study area was Amir Kabir Agro-Industry Irrigation Network in Khuzestan province, Iran. Results showed that the simplified model proposed in this study, estimates ET0 with a determination coefficient of 0.92 and relative root mean square error of 8 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. In: FAO irrigation and drainage paper, no 56. FAO, Roma, Italy

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) – model. J Irrig Drain Eng 133(4):380–394

    Article  Google Scholar 

  • Ångström A (1924) Solar and terrestrial radiation. Q J R Meteorol Soc 50(2):121–126

    Google Scholar 

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslang AA (1998a) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno J, Roerink GJ, van der Wal T (1998b) The surface energy -balance algorithm for land (SEBAL): part 2. Validation J Hydrol 212–213:213–229

    Article  Google Scholar 

  • Blaney HF, Criddle WD (1962) Determining consumptive use and irrigation water requirements, USDA technical bulletin 1275. US Department of Agriculture, Beltsville

    Google Scholar 

  • Bussieres N, Granger RJ, Strong GS (1997) Estimates of regional evapotranspiration using GOES-7 satellite data: Saskatchewan case study. Can J Remote Sens 23(1):3–14

    Article  Google Scholar 

  • Cambell JB (2002) Introduction to remote sensing. The Guilford Press New York

  • Caparrini F, Castelli F, Entekhabi D (2003) Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data. Bound-Layer Meteorol 107:605–633

    Article  Google Scholar 

  • Caparrini F, Castelli F, Entekhabi D (2004) Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J Hydrometeorol 5(1):145–159

    Article  Google Scholar 

  • Cleugh HA, Leuning R, Qiaozhen M, Running SW (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ 106:285–304

    Article  Google Scholar 

  • Crow WT, Kustas WP (2005) Utility of assimilating surface radiometric temperature observations for evaporative fraction and heat transfer coefficient retrieval. Bound-Layer Meteorol 115:105–130

    Article  Google Scholar 

  • DehghaniSanij H, Yamamoto T, Rasiah V (2004) Assessment of evapotranspiration estimation models for use in semi-arid environments. Agric Water Manag 64(2):91–106

    Article  Google Scholar 

  • Dingman SL (1994) Physical hydrology. Macmillan Publishing Company New York, USA

    Google Scholar 

  • Duffie JA, Beckman WA (1980) Solar engineering of thermal processes. Wiley, New York, USA

    Google Scholar 

  • Elhag M, Psilovikos A, Manakos I, Perakis K (2011) Application of the sebs Water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta. Water Resour Manag 25(11):2731–2742

    Article  Google Scholar 

  • Fisher JB, Tu KP, Baldocchi DD (2008) Global estimation of the land atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112(3):901–919

    Article  Google Scholar 

  • Fooladmand HR, Haghighat M (2007) Spatial and temporal calibration of Hargreaves equation for calculating monthly ETo based on Penman-Monteith method. Irrig Drain 56:439–449

    Article  Google Scholar 

  • French AN, Jacob F, Anderson MC, Kustas WP, Timmermans W, Gieske A, Su Z, Su H, McCabe MF, Li F, Prueger J, Brunsell N (2005) Surface energy fluxes with the advanced spaceborne thermal emission and reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sens Environ 99:55–65

    Article  Google Scholar 

  • Gowda PH, Chavez JL, Colaizzi PD, Evett SR, Howell T, Atolk JA (2008) ET mapping for agricultural water management: present status and challenges. Irrig Sci 26(3):223–237

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. In: ASCE manuals and reports on engineering practice, no 70. ASCE, New York

  • John G, Yuan D, Lunetta RS, Elvidge CD (1998) A change detection experiment using vegetation indices. Photogram Eng Remote Sens 62:143–150

    Google Scholar 

  • Julien Y, Sobrino JA, Verhoef W (2006) Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens Environ 103(1):43–55

    Article  Google Scholar 

  • Maeda EE, Wiberg DA, Pellikka PK (2011) Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl Geogr 31:251–258

    Article  Google Scholar 

  • Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11(3):277–288

    Google Scholar 

  • Menenti M, Choudhury BJ (1993) Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. In Proc. of exchange processes at the land surface for a range of space and time Scales, eds. H. J. Bolle et al. IAHS Pub. 212, 561–568. Wallingford, OX, UK.

  • Moran MS, Jackson RD (1991) Assessing the spatial distribution of evapotranspiration remotely sensed inputs. J Environ Qual 20(4):725–737

    Article  Google Scholar 

  • Norman JM, Anderson MC, Kustas WP, French AN, Mecikalski J, Torn R, Diak GR, Schmugge TJ, Tanner BCW (2003) Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour Res 39(8):1221. doi:10.1029/2002WR001775

    Google Scholar 

  • Nishida K, Nemani RR, Glassy JM, Running SW (2003) Development of an evapotranspiration index aqua/MODIS for monitoring surface moisture status. IEEE T Geosciremote 41(2):493–501

    Google Scholar 

  • Papadavid G, Hadjimitsis DG, Toulios L, Michaelides S (2013) A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water Resour Manag 27(9):3493–3506

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil, and grass. Proc R Soc Lond A193:120–146

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Rahimikhoob A, Behbahani MR, Fakheri J (2012) An evaluation of four reference evapotranspiration models in a subtropical climate. Water Resour Manag 26:2867–2881

    Article  Google Scholar 

  • Sheng JF, Wilson JP, Lee S (2009) Comparison of land surface temperature (LST) modeled with a spatially-distributed solar radiation model (SRAD) and remote sensing data. Environ Model Softw 24(3):436–443

    Article  Google Scholar 

  • Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6:85–100

    Article  Google Scholar 

  • Tabari H, Talaee P (2011) Local calibration of the Hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. J Hydrol Eng 16(10):837–845

    Article  Google Scholar 

  • Tabari H, Grismer ME, Trajkovic S (2013) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31:107–117

    Article  Google Scholar 

  • Temesgen B, Allen RG, Jensen DT (1999) Adjusting temperature parameters to reflect well-watered conditions. J Irrig ASCE 125(1):26–33

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12:13–49(in French)

    Google Scholar 

  • Wang K, Li Z, Cribb M (2006) Estimation of evaporative fraction from a combination of day and night land surface temperature and NDVI: A new method to determine the priestly–Taylor parameter. Remote Sens Environ 102(3–4):293–305

    Article  Google Scholar 

Download references

Conflict of Interest

We have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rahimikhoob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.A., Rahimikhoob, A. A Simple Model for Determining Reference Evapotranspiration Using NOAA Satellite Data: a Case Study. Environ. Process. 3, 479–493 (2016). https://doi.org/10.1007/s40710-016-0141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-016-0141-7

Keywords

Navigation