Skip to main content
Log in

On the modified transmission eigenvalue problem with an artificial metamaterial background

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

The modified transmission eigenvalue problem arises in inverse scattering theory for inhomogeneous media, by embedding the relevant medium into an other, artificially introduced inhomogeneous medium. In the present work, we examine the case where the artificial medium is characterised as a metamaterial, i.e. having a negative valued refractive index. Our aim is to construct an appropriate spectral Galerkin method to compute the modified transmission eigenvalues, with potential use to the inverse spectral problem as well. We show that the modified transmission eigenvalue problem corresponds to a compact and self-adjoint operator for which the eigenfuction system is not complete in the solution space. By introducing an auxiliary Dirichlet–Neumann eigenvalue problem, we construct an eigenfuction system which has the desired completeness property. We use this complete system to define the Galerkin scheme and by applying some results for compact and positive operator eigenvalue problems, we prove the convergence of our method. We present some numerical examples which validate the eigenvalues approximation. Finally, we pose the corresponding inverse spectral problem and show that the largest eigenvalue can determine an unknown constant refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Audibert, L., Cakoni, F., Haddar, H.: New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data. Inverse Prob. 33, 125011 (2017)

    Article  MathSciNet  Google Scholar 

  2. Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet or transmission eigenvalues from far field data. C.R. Math. 348, 379–383 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cakoni, F., Colton, D., Haddar, H.: Inverse scattering theory and transmission eigenvalues. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 88. SIAM, Philadelphia (2016)

  4. Cakoni, F., Colton, D., Meng, S., Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 76, 1737–1763 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cakoni, F., Colton, D., Gintides, D.: The interior transmission eigenvalue problem. SIAM J. Math. Anal. 42, 2912–2921 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. In: Uhlmann, G. (ed.) Inverse Problems and Applications: Inside Out II, pp. 527–578. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  7. Cakoni, F., Haddar, H.: Special issue on transmission eigenvalues. Inverse Prob. 29, 100201 (2013)

    Article  Google Scholar 

  8. Camaño, J., Lackner, C., Monk, P.: Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49, 4376–4401 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cogar, S.: New Eigenvalue Problems in Inverse Scattering. PhD Thesis, University of Delaware (2019)

  10. Cogar, S., Colton, D., Meng, S., Monk, P.: Modified transmission eigenvalues in inverse scattering theory. Inverse Prob. 33, 125002 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cogar, S., Monk, P.: Modified electromagnetic transmission eigenvalues in inverse scattering theory. (2020). arXiv preprint arXiv:2005.14277

  12. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  Google Scholar 

  13. Gould, S.: Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein, and Aronszajn. Dover, New York (1995)

    MATH  Google Scholar 

  14. Gintides, D., Pallikarakis, N.: A computational method for the inverse transmission eigenvalue problem. Inverse Prob. 29, 104010 (2013)

    Article  MathSciNet  Google Scholar 

  15. Gohberg, I., Goldberg, S., Kaashoek, M.: Basic Classes of Linear Operators. Birkhauser, Basel (2003)

    Book  Google Scholar 

  16. Gong, B., Sun, J., Wu, X.: Finite element approximation of the modified Maxwell’s Stekloff eigenvalues. (2020). arXiv preprint arXiv:2004.04588

  17. Harris, I.: Neumann spectral-Galerkin method for the inverse scattering Steklov eigenvalues and applications. (2020). arXiv preprint arXiv:2006.10567

  18. Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986)

    Article  MathSciNet  Google Scholar 

  19. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Monk, P.: Finite Element Methods for Maxwell’s Equations. Claredon Press, Oxford (2003)

    Book  Google Scholar 

  21. Pallikarakis, N.: The Inverse Spectral Problem for the Reconstruction of the Refractive Index from the Interior Transmission Problem. PhD Thesis, National Technical University of Athens (2017)

  22. Sun, J., Zhou, A.: Finite Element Methods For Eigenvalue Problems. CRC Press, New York (2017)

    MATH  Google Scholar 

  23. Weisstein, E.W.: Bessel Function Zeros. From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/BesselFunctionZeros.html

Download references

Acknowledgements

We would like to thank the reviewers for their comments and suggestions which helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drossos Gintides.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is carried out/funded in the context of the project “Direct and Inverse Spectral Problems in Scattering Theory” (MIS 5049186) under the call for proposals “Researchers’ support with an emphasis on young researchers- 2nd Cycle”. The project is co-financed by Greece and the European Union (European Social Fund- ESF) by the Operational Programme Human Resources Development, Education and Lifelong Learning 2014–2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gintides, D., Pallikarakis, N. & Stratouras, K. On the modified transmission eigenvalue problem with an artificial metamaterial background. Res Math Sci 8, 40 (2021). https://doi.org/10.1007/s40687-021-00278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-021-00278-z

Keywords

Mathematics Subject Classification

Navigation