Skip to main content
Log in

Encapsulation of Metal Catalysts for Stable Solid Oxide Fuel Cell Cathodes

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Metal catalysts have been employed as cathodes for solid oxide fuel cells to facilitate the surface exchange rate in the intermediate temperature range (600–800 °C). However, incorporated metal catalysts easily agglomerate, resulting in the loss of the reaction sites; thus, the electrochemical performance rapidly deteriorates over time. To hinder the agglomeration of metal catalysts while maintaining the catalytic activity, we encapsulated metal catalysts with nano-particulated perovskite materials using an infiltration technique. The encapsulation of Ag nanoparticles with nano-particulated Sm0.5Sr0.5CoO3-δ (SSC) successfully prevented the agglomeration of Ag nanoparticles, maintaining the initial polarization resistance for 200 h at 650 °C, while the polarization resistance of the SSC electrodes with the Ag nanoparticles increased by ~ 190% after 200 h at 650 °C because of the thermal agglomeration of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wachsman, E. D., & Lee, K. T. (2011). Lowering the temperature of solid oxide fuel cells. Science, 334, 935–939.

    Article  Google Scholar 

  2. Brett, D. J., Atkinson, A., Brandon, N. P., & Skinner, S. J. (2008). Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 37, 1568–1578.

    Article  Google Scholar 

  3. Choi, M., Hwang, S., Kim, S. J., Lee, J., Byun, D., & Lee, W. (2019). Rational design of a metallic functional layer for high-performance solid oxide fuel cells. ACS Applied Energy Materials, 2, 4059–4068.

    Article  Google Scholar 

  4. Kim, S. J., Choi, M., Lee, J., & Lee, W. (2020). Modifying defect structures at interfaces for high-performance solid oxide fuel cells. Journal of the European Ceramic Society, 40, 3089–3097.

    Article  Google Scholar 

  5. Koo, J. Y., Mun, T., Lee, J., Choi, M., Kim, S. J., & Lee, W. (2020). Enhancement of oxygen reduction reaction kinetics using infiltrated yttria-stabilized zirconia interlayers at the electrolyte/electrode interfaces of solid oxide fuel cells. Journal of Power Sources, 472, 228606.

    Article  Google Scholar 

  6. Lee, J., Hwang, S., Ahn, M., Choi, M., Han, S., Byun, D., & Lee, W. (2019). Enhanced interface reactivity by a nanowrinkled functional layer for intermediate-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 7, 21120–21127.

    Article  Google Scholar 

  7. Chang, I., Ji, S., Park, J., Lee, M. H., & Cha, S. W. (2015). Ultrathin YSZ coating on Pt cathode for high thermal stability and enhanced oxygen reduction reaction activity. Advanced Energy Materials, 5, 1402251.

    Article  Google Scholar 

  8. Sahibzada, M., Benson, S., Rudkin, R., & Kilner, J. (1998). Pd-promoted La0. 6Sr0. 4Co0. 2Fe0. 8O3 cathodes. Solid State Ionics, 113, 285–290.

    Article  Google Scholar 

  9. Wang, S., Kato, T., Nagata, S., Honda, T., Kaneko, T., Iwashita, N., & Dokiya, M. (2002). Performance of a La0. 6Sr0. 4Co0. 8Fe0. 2O3–Ce0. 8Gd0. 2O1. 9–Ag cathode for ceria electrolyte SOFCs. Solid State Ionics, 146, 203–210.

    Article  Google Scholar 

  10. Choi, H. J., Kim, M., Neoh, K. C., Jang, D. Y., Kim, H. J., Shin, J. M., et al. (2017). High-performance silver cathode surface treated with scandia-stabilized zirconia nanoparticles for intermediate temperature solid oxide fuel cells. Advanced Energy Materials, 7, 1601956.

    Article  Google Scholar 

  11. Li, H., Kang, H.-S., Grewal, S., Nelson, A. J., Song, S. A., & Lee, M. H. (2020). How an angstrom-thick oxide overcoat enhances durability and activity of nanoparticle-decorated cathodes in solid oxide fuel cells. Journal of Materials Chemistry A, 8, 15927.

    Article  Google Scholar 

  12. Liu, K.-Y., Baek, J. D., Ng, C. S., & Su, P.-C. (2018). Improving thermal stability of nanoporous platinum cathode at platinum/yttria-stabilized zirconia interface by oxygen plasma treatment. Journal of Power Sources, 396, 73–79.

    Article  Google Scholar 

  13. Pi, S.-H., Lee, J.-W., Lee, S.-B., Lim, T.-H., Park, S.-J., Park, C.-O., & Song, R.-H. (2014). Performance and durability of anode-supported flat-tubular solid oxide fuel cells with Ag-Infiltrated cathodes. Journal of Nanoscience and Nanotechnology, 14, 7668–7673.

    Article  Google Scholar 

  14. Ryu, S., Yu, W., Chang, I., Park, T., Cho, G. Y., & Cha, S. W. (2020). Three dimensional YSZ interface engineering layer for enhancement of oxygen reduction reactions of low temperature solid oxide fuel cells. Ceramics International, 46, 12648–12655.

    Article  Google Scholar 

  15. Shin, J. W., Oh, S., Lee, S., Yu, J.-G., Park, J., Go, D., et al. (2019). Ultrathin atomic layer-deposited CeO2 overlayer for high-performance fuel cell electrodes. ACS Applied Materials & Interfaces, 11, 46651–46657.

    Article  Google Scholar 

  16. Choi, M., Lee, J., & Lee, W. (2018). Nano-film coated cathode functional layers towards high performance solid oxide fuel cells. Journal of Materials Chemistry A, 6, 11811–11818.

    Article  Google Scholar 

  17. Choi, M., Lee, J., & Lee, W. (2019). Fluid mechanical approaches for rational design of infiltrated electrodes of solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 53–61.

    Article  Google Scholar 

  18. Adler, S. B. (2004). Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 104, 4791–4844.

    Article  Google Scholar 

  19. Smith, J., Chen, A., Gostovic, D., Hickey, D., Kundinger, D., Duncan, K., et al. (2009). Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ionics, 180, 90–98.

    Article  Google Scholar 

  20. Zhou, W., Ran, R., Shao, Z., Cai, R., Jin, W., Xu, N., & Ahn, J. (2008). Electrochemical performance of silver-modified Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ cathodes prepared via electroless deposition. Electrochimica Acta, 53, 4370–4380.

    Article  Google Scholar 

  21. Ahn, M., Lee, J., & Lee, W. (2017). Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 353, 176–182.

    Article  Google Scholar 

  22. Chang, C.-L., Hsu, C.-S., Huang, J.-B., Hsu, P.-H., & Hwang, B.-H. (2015). Preparation and characterization of SOFC cathodes made of SSC nanofibers. Journal of Alloys and Compounds, 620, 233–239.

    Article  Google Scholar 

  23. Fu, Y.-P., Ouyang, J., Li, C.-H., & Hu, S.-H. (2013). Chemical bulk diffusion coefficient of Sm0. 5Sr0. 5CoO3−δ cathode for solid oxide fuel cells. Journal of Power Sources, 240, 168–177.

    Article  Google Scholar 

  24. Jiang, S. P. (2012). Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. International Journal of Hydrogen Energy, 37, 449–470.

    Article  Google Scholar 

  25. Karimaghaloo, A., Koo, J., Kang, H.-S., Song, S. A., Shim, J. H., & Lee, M. H. (2019). Nanoscale surface and interface engineering of solid oxide fuel cells by atomic layer deposition. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 1–18.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2019R1A2C4070158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonyoung Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Choi, M. & Lee, W. Encapsulation of Metal Catalysts for Stable Solid Oxide Fuel Cell Cathodes. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1529–1535 (2021). https://doi.org/10.1007/s40684-020-00290-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00290-8

Keywords

Navigation