Skip to main content
Log in

Eco-friendly technology for recycling of cutting fluids and metal chips: A review

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Recently, as environment regulations have been strengthened around the world, new policies that take the environment into consideration have been introduced in various industries. As a result, to protect against environmental pollution and save resources, eco-friendly technologies have been studied. Especially in the machining and machinery industries, interest in how to handle the recycling of cutting fluids and metal chips has increased because these materials are highly toxic. Cutting fluids increase tool life and productivity by cooling and lubricating during processing. However, cutting fluids and metal chips result in environmental pollution and are harmful to the human body. In order to solve the problems associated with these materials, eco-friendly technologies for the recycling of cutting fluids and metal chips have been proposed by researchers and industrial workers. In this paper, a review of physical, chemical and biological recycling methods for cutting fluids is performed, and research and development in relation to the recycling of metal chips are reviewed. Moreover, companies involved in the recycling metal chips are summarized based on the country of origin. The final part of this paper provides a technical summary of cutting fluids and metal chips according to associated the methods used to recycle these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, S. M., “Bioinspired Design and Fabrication of Green- Environmental Dry Adhesive with Robust Wide-Tip Shape,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 189–192, 2016.

    Article  Google Scholar 

  2. Nam, S. H., Lee, D. K., Jeong, Y. K., Lee, P., and Shin, J. G., “Environmental Impact Assessment of Composite Small Craft Manufacturing Using the Generic Work Breakdown Structure,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 3, pp. 261–272, 2016.

    Article  Google Scholar 

  3. Yoon, H. S., Kim, M. S., Jang, K. H., and Ahn, S. H., “Future Perspectives of Sustainable Manufacturing and Applications Based on Research Databases,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 9, pp. 1249–1263, 2016.

    Article  Google Scholar 

  4. Ma, J. M. and Kim, N. H., “Optimal Product Design for Life Cycle Assessment (LCA) with the Case Study of Universal Motors,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 9, pp. 1229–1235, 2016.

    Article  Google Scholar 

  5. Kiliçay, K. and Ulutan, M., “Investigation of the Solid Lubrication Effect of Commercial Boron-Based Compounds in End Milling,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 4, pp. 517–524, 2016.

    Article  Google Scholar 

  6. Kim, H. J., Seo, K. J., Kang, K. H., and Kim, D. E., “Nano- Lubrication: A Review,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 6, pp. 829–841, 2016.

    Article  Google Scholar 

  7. Park, K. H., Yang, G. D., and Lee, D. Y., “Tool Wear Analysis on Coated and Uncoated Carbide Tools in Inconel Machining,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1639–1645, 2015.

    Article  Google Scholar 

  8. Wang, H., Huang, L., Yao, C., Kou, M., Wang, W., et al., “Integrated Analysis Method of Thin-Walled Turbine Blade Precise Machining,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 5, pp. 1011–1019, 2015.

    Article  Google Scholar 

  9. Shin, D. H., Lee, S. H., Jeong, C. P., Kwon, O. S., Park, T. S., et al., “Analytic Approaches for Keeping High Braking Efficiency and Clamping Efficiency of Electro Wedge Brakes,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1609–1615, 2015.

    Article  Google Scholar 

  10. Matsumoto, M., Yang, S., Martinsen, K., and Kainuma, Y., “Trends and Research Challenges in Remanufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 129–142, 2016.

    Article  Google Scholar 

  11. Choi, S. S., Kim, B. H., and Noh, S. D., “A Diagnosis and Evaluation Method for Strategic Planning and Systematic Design of a Virtual Factory in Smart Manufacturing Systems,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 6, pp. 1107–1115, 2015.

    Article  Google Scholar 

  12. Wang, Y. G., Chen, Y., and Zhao, Y. W., “Chemical Mechanical Planarization of Silicon Wafers at Natural pH for Green Manufacturing,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 9, pp. 2049–2054, 2015.

    Article  Google Scholar 

  13. Chong, W. T., Muzammil, W. K., Fazlizan, A., Hassan, M. R., Taheri, H., et al., “Urban Eco-GreenergyTM Hybrid Wind-Solar Photovoltaic Energy System and Its Applications,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1263–1268, 2015.

    Article  Google Scholar 

  14. Wichmann, H., Stache, H., Schmidt, C., Winter, M., Bock, R., et al., “Ecological and Economic Evaluation of a Novel Glycerol Based Biocide-Free Metalworking Fluid,” Journal of Cleaner Production, Vol. 43, pp. 12–19, 2013.

    Article  Google Scholar 

  15. Najiha, M. S., Rahman, M. M., and Yusoff, A. R., “Environmental Impacts and Hazards Associated with Metal Working Fluids and Recent Advances in the Sustainable Systems: A Review,” Renewable and Sustainable Energy Reviews, Vol. 60, pp. 1008–1031, 2016.

    Article  Google Scholar 

  16. Greeley, M. and Rajagopalan, N., “Impact of Environmental Contaminants on Machining Properties of Metalworking Fluids,” Tribology International, Vol. 37, No. 4, pp. 327–332, 2004.

    Article  Google Scholar 

  17. Brinksmeier, E., Meyer, D., Huesmann-Coreds, A. G., and Herrmann, C., “Metalworking Fluids—Mechanisms and Performance,” CIRP Annals-Manufacturing Technology, Vol. 64, No. 2, pp. 605–628, 2015.

    Article  Google Scholar 

  18. Irani, R. A., Bauer, R. J., and Warkentin, A., “A Review of Cutting Fluid Application in the Grinding Process,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 15, pp. 1696–1705, 2005.

    Article  Google Scholar 

  19. Ei Baradie, M. A., “Cutting Fluids: Part I. Characterisation,” Journal of Materials Processing Technology, Vol. 56, Nos. 1-4, pp. 786–797, 1996.

    Article  Google Scholar 

  20. Feng, W., Yin, Y., Mendoza, M. D. L., Wang, L., Chen, X., et al., “Freeze-Thaw Method for Oil Recovery from Waste Cutting Fluid without Chemical Additions,” Journal of Cleaner Production, Vol. 148, pp. 84–89, 2017.

    Article  Google Scholar 

  21. Debnath, S., Reddy, M. M., and Yi, Q. S., “Environmental Friendly Cutting Fluids and Cooling Techniques in Machining: A Review,” Journal of Cleaner Production, Vol. 83, pp. 33–47, 2014.

    Article  Google Scholar 

  22. Talib, N. and Rahim, E. A., “Performance Evaluation of Chemically Modified Crude Jatropha Oil as a Bio-Based Metalworking Fluids for Machining Process,” Procedia CIRP, Vol. 26, pp. 346–350, 2015.

    Article  Google Scholar 

  23. Lawal, S. A., Choudhury, I. A., and Nukman, Y., “Application of Vegetable Oil-Based Metalworking Fluids in Machining Ferrous Metals—A Review,” International Journal of Machine Tools and Manufacture, Vol. 52, No. 1, pp. 1–12, 2012.

    Article  Google Scholar 

  24. Amrita, M. and Shariq, S. A., “Experimental Investigation on Application of Emulsifier Oil Based Nano Cutting Fluids in Metal Cutting Process,” Procedia Engineering, Vol. 97, pp. 115–124, 2014.

    Article  Google Scholar 

  25. Meyer, D. and Wagner, A., “Influence of Metalworking Fluid Additives on the Thermal Conditions in Grinding,” CIRP Annals- Manufacturing Technology, Vol. 65, No. 1, pp. 313–316, 2016.

    Article  Google Scholar 

  26. Hazirbaba, K., “Field and Laboratory Performance of a Cold-Region Sand Stabilized with Geofiber and Synthetic Fluid,” Cold Regions Science and Technology, Vol. 135, pp. 16–27, 2017.

    Article  Google Scholar 

  27. Dardir, M. M., Ibrahime, S., Soliman, M., Desouky, S. D., and Hafiz, A. A., “Preparation and Evaluation of Some Esteramides as Synthetic Based Drilling Fluids,” Egyptian Journal of Petroleum, Vol. 23, No. 1, pp. 35–43, 2014.

    Article  Google Scholar 

  28. Shvedova, A. A., Kisin, E., Murray, A., Smith, C., Castranova, V., et al., “Enhanced Oxidative Stress in the Skin of Vitamin E Deficient Mice Exposed to Semisynthetic Metal Working Fluids,” Toxicology, Vol. 176, No. 1, pp. 135–143, 2002.

    Article  Google Scholar 

  29. Koch, T., Passman, F., and Rabenstein, A., “Comparative Study of Microbiological Monitoring of Water-Miscible Metalworking Fluids,” International Biodeterioration & Biodegradation, Vol. 98, pp. 19–25, 2015.

    Article  Google Scholar 

  30. Bejjani, R., Balazinski, M., Attia, H., Plamondon, P., and L’Esperance, G., “Chip Formation and Microstructure Evolution in the Adiabatic Shear Band when Machining Titanium Metal Matrix Composites,” International Journal of Machine Tools and Manufacture, Vol. 109, pp. 137–146, 2016.

    Article  Google Scholar 

  31. Fu, H., Matthews, M. A., and Warner, L. S., “Recycling Steel from Grinding Swarf,” Waste Management, Vol. 18, No. 5, pp. 321–329, 1998.

    Article  Google Scholar 

  32. Chang, J. I., Lin, J. J., Huang, J. S., and Chang, Y. M., “Recycling Oil and Steel from Grinding Swarf,” Resources, Conservation and Recycling, Vol. 49, No. 2, pp. 191–201, 2006.

    Article  Google Scholar 

  33. Zhang, G. and To, S., “A Novel Surface Quality Evaluation Method in Ultra-Precisionraster Milling Using Cutting Chips,” Journal of Materials Processing Technology, Vol. 219, pp. 328–338, 2015.

    Article  Google Scholar 

  34. Ei Baradie, M. A., “Cutting Fluids: Part II.Recycling and Clean Machining,” Journal of Materials Processing Technology, Vol. 56, Nos. 1-4, pp. 798-806, 1996.

    Google Scholar 

  35. Brown, C. and Milke, M., “Recycling Disaster Waste: Feasibility, Method and Effectiveness,” Resources, Conservation and Recycling, Vol. 106, No. 1, pp. 21–32, 2016.

    Article  Google Scholar 

  36. Kobya, M., Ciftci, C., Bayramoglu, M., and Sensoy, M. T., “Study on the Treatment of Waste Metal Cutting Fluids Using Electrocoagulation,” Separation and Purification Technology, Vol. 60, No. 3, pp. 285-291, 2008.

    Google Scholar 

  37. Ohara, T., Kumakura, H., and Wada, H., “Magnetic Separation Using Superconducting Magnets,” Physica C: Superconductivity, Vol. 357, No. 2, pp. 1272–1280, 2001.

    Article  Google Scholar 

  38. Igarashi, S., Nomura, N., Mishima, F., Akiyama, Y., and Nishijima, S., “Study on Magnetic Separation for Decontamination of Cesium Contaminated Soil by Using Superconducting Magnet,” Physica C: Superconductivity and Its Applications, Vol. 504, pp. 144–147, 2014.

    Article  Google Scholar 

  39. Shaikh, Y. S., Seibert, C., and Kampeis, P., “Study on Optimizing High-Gradient Magnetic Separation-Part II: Experimental Evaluation of the Performance of a New Designed Magnetic Filter,” World Journal of Condensed Matter Physics, Vol. 6, No. 2, pp. 137–151, 2016.

    Article  Google Scholar 

  40. Chang, S. C., Anderson, T. I., Bahrman, S. E., Gruden, C. L., Khijiniak, A. I., et al., “Comparing Recovering Efficiency of Immunomagnetic Separation and Centrifugation of Mycobacteria in Metalworking Fluids,” Journal of Industrial Microbiology and Biotechnology, Vol. 32, No. 11, pp. 629–638, 2005.

    Article  Google Scholar 

  41. Nakai, Y., Mishima, F., Akiyama, Y., and Nishijima, S., “Development of High Gradient Magnetic Separation System under Dry Condition,” Physica C: Superconductivity, Vol. 470, No. 20, pp. 1812–1817, 2010.

    Article  Google Scholar 

  42. Benito, J. M., Ríos, G., Ortea, E., Fernández, E., Cambiella, A., et al., “Design and Construction of a Modular Pilot Plant for the Treatment of Oil-Containing Wastewaters,” Desalination, Vol. 147, Nos. 1-3, pp. 5–10, 2002.

    Article  Google Scholar 

  43. Puneeth, H. V. and Prasad, M. S. G., “Design and Flow Analysis of Hydrocyclone for Filtration of Metal Working Fluids,” International Journal of Research in Aeronautical and Mechanical Engineering, Vol. 4, No. 1, pp. 146–155, 2016.

    Google Scholar 

  44. Yamamoto, T., Kageyama, T., Yoshida, H., and Fukui, K., “Effect of New Blade of Centrifugal Separator on Particle Separation Performance,” Separation and Purification Technology, Vol. 162, pp. 120–126, 2016.

    Article  Google Scholar 

  45. Schütz, S., Gorbach, G., and Piesche, M., “Modeling Fluid Behavior and Droplet Interactions during Liquid-Liquid Separation in Hydrocyclones,” Chemical Engineering Science, Vol. 64, No. 18, pp. 3935–3952, 2009.

    Article  Google Scholar 

  46. Cambiella, A., Benito, J. M., Pazos, C., and Coca, J., “Centrifugal Separation Efficiency in the Treatment of Waste Emulsified Oils,” Chemical Engineering Research and Design, Vol. 84, No. 1, pp. 69–76, 2006.

    Article  Google Scholar 

  47. Yamamoto, T., Watanabe, N., Fukui, K., and Yoshida, H., “Effect of Inner Structure of Centrifugal Separator on Particle Classification Performance,” Powder Technology, Vol. 192, No. 3, pp. 268–272, 2009.

    Article  Google Scholar 

  48. Cheryan, M. and Rajagopalan, N., “Membrane Processing of Oily Streams, Wastewater Treatment and Waste Reduction,” Journal of Membrane Science, Vol. 151, No. 1, pp. 13–28, 1998.

    Article  Google Scholar 

  49. Saxena, A., Tripathi, B. P., Kumar, M., and Shahi, V. K., “Membrane-Based Techniques for the Separation and Purification of Proteins: An Overview,” Advances in Colloid and Interface Science, Vol. 145, No. 1, pp. 1–22, 2009.

    Article  Google Scholar 

  50. Hilai, N., Busca, G., Hankins, N., and Mohammad, A. W., “The Use of Ultrafiltration and Nanofiltration Membranes in the Treatment of Metal-Working Fluids,” Desalination, Vol. 167, pp. 227–238, 2004.

    Article  Google Scholar 

  51. Busca, G., Hilai, N., and Atkin, B. P., “Optimisation of Washing Cycle on Ultrafiltration Membranes Used in Treatment of Metalworking Fluids,” Desalination, Vol. 156, Nos. 1-3, pp. 199–207, 2003.

    Article  Google Scholar 

  52. Murić, A., Petrinić, I., and Christensen, M. L., “Comparison of Ceramic and Polymeric Ultrafiltration Membranes for Treating Wastewater from Metalworking Industry,” Chemical Engineering Journal, Vol. 255, pp. 403–410, 2014.

    Article  Google Scholar 

  53. Kim, J. H. and Jo, J. N., “Chemical Oxygen Demand (COD) Model for the Assessment of Water Quality in the Han River, Korea,” Korean Journal of Environmental Health, Vol. 42, No. 4, pp. 280–292, 2016.

    Article  Google Scholar 

  54. Gutiérrez, G., Cambiella, A., Benito, J. M., Pazos, C., and Coca, J., “The Effect of Additives on the Treatment of Oil-in-Water Emulsions by Vacuum Evaporation,” Journal of Hazardous Materials, Vol. 144, No. 3, pp. 649–654, 2007.

    Article  Google Scholar 

  55. Amin, M. M., Mofrad, M. M. G., Pourzamani, H., Sebaradar, S. M., and Ebrahim, K., “Treatment of Industrial Wastewater Contaminated with Recalcitrant Metal Working Fluids by the Photo-Fenton Process as Post-Treatment for DAF,” Journal of Industrial and Engineering Chemistry, Vol. 45, pp. 412–420, 2017.

    Article  Google Scholar 

  56. Demirbas, E. and Kobya, M., “Operating Cost and Treatment of Metalworking Fluid Wastewater by Chemical Coagulation and Electrocoagulation Processes,” Process Safety and Environmental Protection, Vol. 105, pp. 79–90, 2017.

    Article  Google Scholar 

  57. Connolly, H. E., Gast, C. J., Wylie, D., Stephenson, T., and Thompson, I. P., “Enhanced Biological Treatment of Spent Metalworking Fluids by Prior Removal of a Polymer,” Journal of Chemical Technology and Biotechnology, Vol. 81, No. 9, pp. 1540–1546, 2006.

    Article  Google Scholar 

  58. Kim, L. H. and Lee, S. S., “Biodegradation of Cutting Oil by Pseudomonas Aeruginosa KS47,” Korean Journal of Microbiology, Vol. 44, No. 1, pp. 22–28, 2008.

    Google Scholar 

  59. Hilai, N., Busca, G., Rozada, F., and Hankins, N., “Use of Activated Carbon to Polish Effluent from Metalworking Treatment Plant: Comparison of Different Streams,” Desalination, Vol. 185, Nos. 1-3, pp. 297–306, 2005.

    Article  Google Scholar 

  60. Jagadevan, S., Graham, N. J., and Thompson, I. P., “Treatment of Waste Metalworking Fluid by a Hybrid Ozone-Biological Process,” Journal of Hazardous Materials, Vol. 244, pp. 394–402, 2013.

    Article  Google Scholar 

  61. Woo, W. S., Oh, N. S., and Lee, C. M., “A Study on the Corruption Prevention Fundamental Experiments of Water Soluble Cutting Oil Using Copper Alloy,” Proc. of Korean Society of Manufacturing Technology Engineers Spring Conference, p. 172, 2015.

    Google Scholar 

  62. Song, J. Y., Lee, S. H., and Park, K. H., “A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids,” Journal of the Korean Oil Chemists Society, Vol. 24, No. 3, pp. 233–237, 2007.

    Google Scholar 

  63. Lee, S. H., Kim, J. H., and Song, J. Y., “A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids,” Journal of Korean oil Chemists Society, Vol. 26, No. 1, pp. 69–73, 2009.

    Google Scholar 

  64. Ruffino, B. and Zanetti, M. C., “Recycling of Steel from Grinding Scraps: Reclamation Plant Design and Cost Analysis,” Resources, Conservation and Recycling, Vol. 52, No. 11, pp. 1315–1321, 2008.

    Article  Google Scholar 

  65. Da Costa, C. E., Zapata, W. C., and Parucker, M. L., “Characterization of Casting Iron Powder from Recycled Swarf,” Journal of Materials Processing Technology, Vol. 143, pp 138–143, 2003.

    Article  Google Scholar 

  66. Hu, M., Ji, Z., Chen, X., and Zhang, Z., “Effect of Chip Size on Mechanical Property and Microstructure of AZ91D Magnesium Alloy Prepared by Solid State Recycling,” Materials Characterization, Vol. 59, No. 4, pp. 385–389, 2008.

    Article  Google Scholar 

  67. Jirang, C. and Roven, H. J., “Recycling of Automotive Aluminum,” Transactions of Nonferrous Metals Society of China, Vol. 20, No. 11, pp. 2057–2063, 2010.

    Article  Google Scholar 

  68. Shamsudin, S., Lajis, M. A., and Zhong, Z. W., “Solid-State Recycling of Light Metals: A Review,” Advances in Mechanical Engineering, Vol. 8, pp. 1–23, 2016.

    Article  Google Scholar 

  69. Shamsudin, S., Lajis, M. A., and Zhong, Z. W., “Evolutionary in Solid State Recycling Techniques of Aluminium: A Review,” Procedia CIRP, Vol. 40, pp. 256–261, 2016.

    Article  Google Scholar 

  70. Gronostajski, J., Marciniak, H., and Matuszak, A., “New Methods of Aluminium and Aluminium-Alloy Chips Recycling,” Journal of Materials Processing Technology, Vol. 106, No. 1, pp. 34–39, 2000.

    Article  Google Scholar 

  71. RUF Maschinenbau GmbH & Co., KG., “Briquetting Systems Metal Specifications,” http://www.briquetting.com/briquetting-systems/metal/specifications/ (Accessed 21 SEP 2017)

  72. WEIMA Maschinenbau GmbH, “Metal Briquetting Machines,” http://weima.com/usa/briquetting/metal.html (Accessed 21 SEP 2017)

  73. PALLMANN Maschinenfabrik GmbH & Co., KG., “Recycling (Briquetting Press PVB),” http://pdf.directindustry.com/pdf/ pallmann-maschinenfabrik/briquetting-press-pvb/63389-580806.html (Accessed 21 SEP 2017)

  74. STANSZ BV,“Briquetting Machinery,” http://www.stansz.nl/en/ products/briquetting-machinery (Accessed 21 SEP 2017)

  75. Nederman, “Metal Chip Briquetter,” http://www.nederman.com/en/ products/product?product=334090 (Accessed 21 SEP 2017)

  76. CO.MA.FER. MACCHINE, “Metal Briquetting Presses,” http:// www.comafer.it/en/prodotti/bricchettatrici-metalpress-linea-metallo (Accessed 21 SEP 2017)

  77. SIMOLIN WATER & ENERGY LTD., “Briquetting,” http:// www.simolingroup.com/wordpress/recycling/briquetting/ (Accessed 21 SEP 2017)

  78. Metso, “Recycling,” http://www.metso.com/products/metal-recycling-scrap-processing-solutions/Lindemann-etabriq/ (Accessed 21 SEP 2017)

  79. John Hart Advanced Manufacturing Technologies, “Command Briquetters,” http://www.johnhart.com.au/chip-management/command-briquetters (Accessed 21 SEP 2017)

  80. ARS–Applied Recovery Systems, “Industrial Specifications,” http:/ /www.ars-inc.com/industrial-specs.aspx (Accessed 21 SEP 2017)

  81. PRAB, “Dualpak Briquetter,” http://www.prab.com/ metalmachining-scrapequip/briquetters.html (Accessed 21 SEP 2017)

  82. EMI–Equipment Manufacturers International, Inc., “Briqutting Systems for Foundries,” http://www.emi-inc.com/briquettingsystems. php (Accessed 21 SEP 2017)

  83. AMADA MACHINE TOOLS, “Automatic Chip Compactor,” http:/ /www.amt.amada.co.jp/english/products/cutting/other/scp100h_10 3h.html (Accessed 21 SEP 2017)

  84. Anyang Forging Press Machinery Industry Co., Ltd., “Metal Chips Briquetter,” http://www.chinesehammers.com/EngLish/channels/metalbriquetter. html (Accessed 21 SEP 2017)

  85. Sammatech Co., Ltd., “Chip Compactor,” http://www.sammatech. com/2010.php (Accessed 21 SEP 2017)

  86. POSSTECH, “Chip Briquette,” http://posstech.co.kr/?page_id=491 (Accessed 21 SEP 2017)

  87. Rahim, S. N., Lajis, M. A., and Ariffin, S., “A Review on Recycling Aluminum Chips by Hot Extrusion Process,” Procedia CIRP, Vol. 26, pp. 761–766, 2015.

    Article  Google Scholar 

  88. Haase, M. and Tekkaya, E., “Cold Extrusion of Hot Extruded Aluminum Chips,” Journal of Materials Processing Technology, Vol. 217, pp. 356-367. 2015.

  89. Tekkaya, A. E., Schikorra, M., Becker, D., Biermann, D., Hammer, N., et al., “Hot Profile Extrusion of AA-6060 Aluminum Chips,” Journal of Materials Processing Technology, Vol. 209, No. 7, pp. 3343–3350, 2009.

    Article  Google Scholar 

  90. Fogagnolo, F. B., Ruiz-Navas, E. M., Simón, M. A., and Martinez, M. A., “Recycling of Aluminium Alloy and Aluminium Matrix Composite Chips by Pressing and Hot Extrusion,” Journal of Materials Processing Technology, Vol. 143, pp. 792-795, 2003.

    Google Scholar 

  91. Güley, V., Güzel, A., Jäger, A., Khalifa, B. N., Tekkaya, A. E., et al., “Effect of Die Design on the Welding Quality during Solid State Recycling of AA6060 Chips by Hot Extrusion,” Materials Science and Engineering: A, Vol. 574, pp. 163–175, 2013.

    Article  Google Scholar 

  92. Hu, M. L., Ji, Z. S., and Chen, X. Y., “Effect of Extrusion Ratio on Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Recycled from Scraps by Hot Extrusion,” Transactions of Nonferrous Metals Society of China, Vol. 20, No. 6, pp. 987–991, 2010.

    Article  Google Scholar 

  93. Sugiyama, S., Mera, T., and Yanagimoto, J., “Recycling of Minute Metal Scraps by Semisolid Processing: Manufacturing of Design Materials,” Transactions of Nonferrous Metals Society of China, Vol. 20, No. 9, pp. 1567–1571, 2010.

    Article  Google Scholar 

  94. Chiba, R., Nakamura, T., and Kuroda, M., “Solid-State Recycling of Aluminium Alloy Swarf through Cold Profile Extrusion and Cold Rolling,” Journal of Materials Processing Technology, Vol. 211, No. 11, pp. 1878–1887, 2011.

    Article  Google Scholar 

  95. Suzuki, K., Huang, X., Watazu, A., Shigematsu, I., and Saito, N., “Recycling of 6061 Aluminum Alloy Cutting Chips Using Hot Extrusion and Hot Rolling,” National Institute of Advanced Industrial Science and Technology, Vol. 544-545, pp. 443–446, 2007.

    Google Scholar 

  96. Yoshimura, H. and Tanaka, K., “Precision Forging of Aluminum and Steel,” Journal of Materials Processing Technology, Vol. 98, No. 2, pp. 196–204, 2000.

    Article  Google Scholar 

  97. Xu, H. Y., Ji, Z. S., Hu, M. L., and Wang, Z. Y., “Microstructure Evolution of Hot Pressed AZ91D Alloy Chips Reheated to Semi- Solid State,” Transactions of Nonferrous Metals Society of China, Vol. 22, No. 12, pp. 2906–2912, 2012.

    Article  Google Scholar 

  98. Khamis, S. S., Lajis, M. A., and Albert, R. A. O., “A Sustainable Direct Recycling of Aluminum Chip (AA6061) in Hot Press Forging Employing Response Surface Methodology,” Procedia CIRP, Vol. 26, pp. 477–481, 2015.

    Article  Google Scholar 

  99. Yusuf, N. K., Lajis, M. A., Daud, M. I., and Noh, M. Z., “Effect of Operating Temperature on Direct Recycling Aluminium Chips (AA6061) in Hot Press Forging Process,” Applied Mechanics and Materials, Vol. 315, pp. 728–732, 2013.

    Article  Google Scholar 

  100. Selmy, A. I., El-Aal, M. I. A., El-Gohry, A. M., and Taha, M. A., “Solid-State Recycling of Aluminum Alloy (AA-6061) Chips via Hot Extrusion Followed by Equal Channel Angular Pressing (ECAP),” The Egyptian International Journal of Engineering Sciences and Technology, Vol. 21, pp. 33–42, 2016.

    Google Scholar 

  101. Luo, P., Mcdonald, D. T., Palanisamy, S., Dargusch, M. S., and Xia, K., “Ultrafine-Grained Pure Ti Recycled by Equal Channel Angular Pressing with High Strength and Good Ductility,” Journal of Materials Processing Technology, Vol. 213, No. 3, pp. 469–476, 2013.

    Article  Google Scholar 

  102. Lapovok, R., Qi, Y., Ng, H. P., and Estrin, Y., “Multicomponent Materials from Machining Chips Compacted by Equal-Channel Angular Pressing,” Journal of Materials Science, Vol. 49, No. 3, pp. 1193–1204, 2014.

    Article  Google Scholar 

  103. Shi, Q., Tse, Y. Y., and Higginson, R. L., “Effects of Processing Parameters on Relative Density, Microhardness and Microstructure of Recycled Ti–6Al–4V from Machining Chips Produced by Equal Channel Angular Pressing,” Materials Science and Engineering A, Vol. 651, pp. 248–258, 2016.

    Article  Google Scholar 

  104. Johnson, J., Reck, B. K., Wang, T., and Graedel, T. E., “The Energy Benefit of Stainless Steel Recycling,” Energy Policy, Vol. 36, pp. 181–192, 2008.

    Article  Google Scholar 

  105. Soković, M. and Mijanović, K., “Ecological Aspects of the Cutting Fluids and Its Influence on Quantifiable Parameters of the Cutting Processes,” Journal of Materials Processing Technology, Vol. 109, No. 1, pp. 181–189, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Man Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CM., Choi, YH., Ha, JH. et al. Eco-friendly technology for recycling of cutting fluids and metal chips: A review. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 457–468 (2017). https://doi.org/10.1007/s40684-017-0051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-017-0051-9

Keywords

Navigation