Skip to main content

4D Printing of Stimuli-Responsive Materials

  • Chapter
  • First Online:
Additive Manufacturing

Abstract

Four-dimensional (4D) printing, an innovative extension of three-dimensional (3D) printing, is defined as the additive manufacturing technology of intelligent components with controllable stimuli-responsive characteristics. The 4D-printed components can automatically and controllably change their shapes, properties, and/or functionalities with time in response to external stimuli, such as heat, moisture, light, PH, magnetism, and electricity. 4D printing integrates the design of structures’ intelligent behaviors into the fabrication processes, realizing integrated manufacturing of materials, structures, and functionalities. It has aroused worldwide attention in the academic and industrial communities since it was first proposed in 2013. Stimuli-response materials play a critical role in the relation of 4D printing. The stimuli-responsive characteristics of the 4D-printed components mainly depend on the properties of used stimuli-responsive materials and their combination and arrangement in 3D space. However, so far only limited stimuli-responsive materials for 4D printing have been developed, which greatly restricts to tap of the application potential of 4D printing. Thus, stimuli-responsive materials for 4D printing have become the hot and key spots of research in academia and engineering fields. In this chapter, after an introduction of the definition and prospect of 4D printing, the research advances in available stimuli-responsive materials for 4D printing were reviewed in detail in three categories: polymers and their composite materials, metals and their composite materials, and ceramics and their composite materials. This chapter may enhance our understanding of the 4D printing of stimuli-responsive materials and inspire further innovative ideas for the design of materials for 4D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu SY, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552

    Article  Google Scholar 

  2. Ngo TD, Kashani A, Imbalzano G et al (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B 143:172–196

    Article  Google Scholar 

  3. Bose S, Ke D, Sahasrabudhe H et al (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111

    Article  Google Scholar 

  4. Bandyopadhyay A, Heer B (2018) Additive manufacturing of multi-material structures. Mater Sci Eng R Rep 129:1–16

    Article  Google Scholar 

  5. Sames WJ, List FA, Pannala S et al (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360

    Article  Google Scholar 

  6. Wan X, Luo L, Liu Y et al (2020) Direct ink writing based 4D printing of materials and their applications. Adv Sci 7:2001000

    Article  Google Scholar 

  7. Rafiee M, Farahani RD, Therriault D (2020) Multi-material 3D and 4D printing: a survey. Adv Sci 7:1902307

    Article  Google Scholar 

  8. Ionov L (2018) 4D biofabrication: materials, methods, and applications. Adv Healthcare Mater 7:1800412

    Article  Google Scholar 

  9. Kuang X, Roach DJ, Wu J et al (2019) Advances in 4D printing: materials and applications. Adv Func Mater 29:1805290

    Article  Google Scholar 

  10. Wan Z, Zhang P, Liu Y et al (2020) Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater 101:26–42

    Article  Google Scholar 

  11. Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84:116–121

    Google Scholar 

  12. Raviv D, Zhao W, McKnelly C et al (2014) Active printed materials for complex self-evolving deformations. Sci Rep 4:7422

    Article  Google Scholar 

  13. Khoo ZX, Teoh JEM, Liu Y et al (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyping 10:103–122

    Article  Google Scholar 

  14. Ghi A, Rossetti F (2016) 4D printing: an emerging technology in manufacturing? Digitally Supported Innovat 171–178

    Google Scholar 

  15. Gladman AS, Matsumoto EA, Nuzzo RG et al (2016) Biomimetic 4D printing. Nat Mater 15:413–419

    Article  Google Scholar 

  16. Leist SK, Zhou J (2016) Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyping 11:249–262

    Article  Google Scholar 

  17. Shi YS, Wu HZ, Yan CZ et al (2020) Four-dimensional printing-the additive manufacturing technology of intelligent components. J Mech Eng 56:1–25

    Article  Google Scholar 

  18. Ryan KR, Down MP, Banks CE (2021) Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications. Chem Eng J 403:126162

    Article  Google Scholar 

  19. Zolfagharian A, Kaynak A, Kouzani A (2020) Closed-loop 4D-printed soft robots. Mater Des 188:108411

    Article  Google Scholar 

  20. Liu Y, Chou TW (2020) Additive manufacturing of multidirectional preforms and composites: from three-dimensional to four-dimensional. Mater Today Adv 5:100045

    Article  Google Scholar 

  21. Joshi S, Rawat K, et al KC (2020) 4D printing of materials for the future: opportunities and challenges. Appl Mater Today 18:100490

    Google Scholar 

  22. Hu Y, Wang Z, Jin D et al (2019) Botanical-inspired 4D printing of hydrogel at the microscale. Adv Func Mater 30:1907377

    Article  Google Scholar 

  23. Spiegel CA, Hippler M, MĂĽnchinger A et al (2019) 4D printing at the microscale. Adv Func Mater 30:1907615

    Article  Google Scholar 

  24. Li YC, Zhang YS, Akpek A et al (2016) 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 9:012001

    Article  Google Scholar 

  25. Lui YS, Sow WT, Tan LP et al (2019) 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater 92:19–36

    Article  Google Scholar 

  26. Rastogi P, Kandasubramanian B (2019) Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem Eng J 366:264–304

    Article  Google Scholar 

  27. Ke D, Chen Z, Momo ZY et al (2020) Recent advances of two-way shape memory polymers and four-dimensional printing under stress-free conditions. Smart Mater Struct 29:023001

    Article  Google Scholar 

  28. Falahati M, Ahmadvand P, Safaee S et al (2020) Smart polymers and nanocomposites for 3D and 4D printing. Mater Today 40:215–245

    Article  Google Scholar 

  29. Shie MY, Shen YF, Astuti SD et al (1864) Review of polymeric materials in 4D printing biomedical applications. Polymers 2019:11

    Google Scholar 

  30. Ma SQ, Zhang YP, Wang M et al (2019) Recent progress in 4D printing of stimuli-responsive polymeric materials. Sci China Technol Sci 63:532–544

    Article  Google Scholar 

  31. Henríquez GCM, Vallejos SMA, Hernandez RJ (2019) Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci 94:57–116

    Article  Google Scholar 

  32. Dong Y, Wang S, Ke Y et al (2020) 4D printed hydrogels: fabrication, materials, and applications. Adv Mater Technol 5:2000034

    Article  Google Scholar 

  33. Champeau M, Heinze DA, Viana TN et al (2020) 4D printing of hydrogels: a review. Adv Func Mater 30:1910606

    Article  Google Scholar 

  34. Ahmed K, Shiblee MDNI, Khosla A et al (2020) Review: recent progresses in 4D printing of gel materials. J Electrochem Soc 167:037563

    Article  Google Scholar 

  35. Atli KC, Johnson L, Ranaiefar M et al (2019) 4D printing of metallic functional materials. Adv Mater Processes 177:16–21

    Google Scholar 

  36. Liu G, Zhao Y, Wu G et al (2018) Origami and 4D printing of elastomer-derived ceramic structures. Sci Adv 4: eaat0641

    Google Scholar 

  37. Xia Y, He Y, Zhang F et al (2020) A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv Mater e2000713

    Google Scholar 

  38. Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Func Mater 30:2003062

    Article  Google Scholar 

  39. Scalet G (2020) Two-way and multiple-way shape memory polymers for soft robotics: an overview. Actuators 9

    Google Scholar 

  40. Keneth SE, Lieberman R, Rednor M et al (2020) Multi-material 3D printed shape memory polymer with tunable melting and glass transition temperature activated by heat or light. Polymers 12:710

    Article  Google Scholar 

  41. Wang W, Yu CY, Serrano APA et al (2019) Soft grasping mechanisms composed of shape memory polymer based self-bending units. Compos B Eng 164:198–204

    Article  Google Scholar 

  42. Zhang B, Zhang W, Zhang Z et al (2019) Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Appl Mater Interfaces 11:10328–10336

    Article  Google Scholar 

  43. Wu HZ, Chen P, Yan CZ et al (2019) Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing. Mater Des 171:107704

    Article  Google Scholar 

  44. Wang W, Li C, Cho M et al (2018) Soft tendril-inspired grippers: shape morphing of programmable polymer-paper bilayer composites. ACS Appl Mater Interfaces 10:10419–10427

    Article  Google Scholar 

  45. Ding Z, Yuan C, Peng X et al (2017) Direct 4D printing via active composite materials. Sci Adv 3:e1602890

    Article  Google Scholar 

  46. Manen VT, Janbaz S, Zadpoor AA (2017) Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater Horiz 4:1064–1069

    Article  Google Scholar 

  47. Choong YYC, Maleksaeedi S, Eng H et al (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126:219–225

    Article  Google Scholar 

  48. Zhang Q, Zhang K, Hu G (2016) Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci Rep 6:22431

    Article  Google Scholar 

  49. Ge Q, Sakhaei AH, Lee H et al (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 6:31110

    Article  Google Scholar 

  50. Zarek M, Layani M, Cooperstein I et al (2016) 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 28:4449–4454

    Article  Google Scholar 

  51. Ge F, Zhao Y (2019) Microstructured actuation of liquid crystal polymer networks. Advan Funct Mater 30

    Google Scholar 

  52. Roach DJ, Yuan C, Kuang X et al (2019) Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces 11:19514–19521

    Article  Google Scholar 

  53. Ambulo CP, Ford MJ, Searles K et al (2020) 4D-printable liquid metal-liquid crystal elastomer composites. ACS Appl Mater Interfaces

    Google Scholar 

  54. Ren L, Li B, He Y et al (2020) Programming shape-morphing behavior of liquid crystal elastomers via parameter-encoded 4D printing. ACS Appl Mater Interfaces 12:15562–15572

    Article  Google Scholar 

  55. Saed MO, Ambulo CP, Kim H et al (2019) Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv Func Mater 29:1806412

    Article  Google Scholar 

  56. Zhang C, Lu X, Fei G et al (2019) 4D printing of a liquid crystal elastomer with a controllable orientation gradient. ACS Appl Mater Interfaces 11:44774–44782

    Article  Google Scholar 

  57. Kotikian A, Truby RL, Boley JW et al (2018) 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater 30:1706164

    Article  Google Scholar 

  58. Lopez-Valdeolivas M, Liu D, Broer DJ et al (2018) 4D printed actuators with soft-robotic functions. Macromol Rapid Commun 39:1700710

    Article  Google Scholar 

  59. Ambulo CP, Burroughs JJ, Boothby JM et al (2017) Four-dimensional printing of liquid crystal elastomers. ACS Appl Mater Interfaces 9:37332–37339

    Article  Google Scholar 

  60. Yuan C, Roach DJ, Dunn CK et al (2017) 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 13:5558–5568

    Article  Google Scholar 

  61. Liu J, Erol O, Pantula A et al (2019) Dual-gel 4D printing of bioinspired tubes. ACS Appl Mater Interfaces 11:8492–8498

    Article  Google Scholar 

  62. Arslan H, Nojoomi A, Jeon J et al (2019) 3D printing of anisotropic hydrogels with bioinspired motion. Advanced Science 6:1800703

    Article  Google Scholar 

  63. Chen Z, Zhao D, Liu B et al (2019) 3D printing of multifunctional hydrogels. Adv Func Mater 29:1900971

    Article  Google Scholar 

  64. Chen TT, Bakhshi H, Liu L et al (2018) Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators. Adv Func Mater 28:1800514

    Article  Google Scholar 

  65. Jin Y, Shen Y, Yin J et al (2018) Nanoclay-based self-supporting responsive nanocomposite hydrogels for printing applications. ACS Appl Mater Interfaces 10:10461–10470

    Article  Google Scholar 

  66. Guo JH, Zhang RR, Zhang L et al (2018) 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett 7:442–446

    Article  Google Scholar 

  67. Jamal M, Kadam SS, Xiao R et al (2013) Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv Healthcare Mater 2:1142–1150

    Article  Google Scholar 

  68. Zhao Z, Qi HJ, Fang D (2019) A finite deformation theory of desolvation and swelling in partially photo-cross-linked polymer networks for 3D/4D printing applications. Soft Matter 15:1005–1016

    Article  Google Scholar 

  69. Zhao Z, Wu J, Mu X et al (2017) Desolvation induced origami of photocurable polymers by digit light processing. Macromol Rapid Commun 38:1600625

    Article  Google Scholar 

  70. Wu J, Zhao Z, Kuang X et al (2018) Reversible shape change structures by grayscale pattern 4D printing. Multifunctional Mater 1:015002

    Article  Google Scholar 

  71. Ji Z, Yan C, Yu B et al (2019) 3D printing of hydrogel architectures with complex and controllable shape deformation. Adv Mater Technol 4:1800713

    Article  Google Scholar 

  72. Mulakkal MC, Trask RS, Ting VP et al (2018) Responsive cellulose-hydrogel composite ink for 4D printing. Mater Des 160:108–118

    Article  Google Scholar 

  73. Baker AB, Bates SRG, Llewellyn-Jones TM et al (2019) 4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Mater Des 163:107544

    Article  Google Scholar 

  74. Zhao Z, Kuang X, Yuan C et al (2018) Hydrophilic/hydrophobic composite shape-shifting structures. ACS Appl Mater Interfaces 10:19932–19939

    Article  Google Scholar 

  75. Wales DJ, Cao Q, Kastner K et al (2018) 3D-printable photochromic molecular materials for reversible information storage. Adv Mater 30:1800159

    Article  Google Scholar 

  76. Gelebart AH, Mulder DJ, Vantomme G et al (2017) A rewritable, reprogrammable, dual light-responsive polymer actuator. Angewandate Chemie-Int Edition 56:13436–13439

    Article  Google Scholar 

  77. Liu Y, Shaw B, Dickey MD et al (2017) Sequential self-folding of polymer sheets. Sci Adv 3:e1602417

    Article  Google Scholar 

  78. Yang H, Leow WR, Wang T et al (2017) 3D printed photoresponsive devices dased on shape memory composites. Adv Mater 29:1701627

    Article  Google Scholar 

  79. Hua DC, Zhang XQ, Ji ZY et al (2018) 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators. J Mater Chem C 6:2123–2131

    Article  Google Scholar 

  80. Zhang Y, Yin X-Y, Zheng M et al (2019) 3D printing of thermoreversible polyurethanes with targeted shape memory and precise in situ self-healing properties. J Mater Chem A 7:6972–6984

    Article  Google Scholar 

  81. Cheng Y, Chan KH, Wang XQ et al (2019) Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS Nano 13:13176–13184

    Article  Google Scholar 

  82. Zhao Z, Wu J, Mu X et al (2017) Origami by frontal photopolymerization. Sci Adv 3:e1602326

    Article  Google Scholar 

  83. Luo Y, Lin X, Chen B et al (2019) Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Biofabrication 11:045019

    Article  Google Scholar 

  84. Wei H, Zhang Q, Yao Y et al (2017) Direct-write fabrication of 4D ative shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces 9:876–883

    Article  Google Scholar 

  85. Kim Y, Yuk H, Zhao R et al (2018) Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:274–279

    Article  Google Scholar 

  86. Shinoda H, Azukizawa S, Maeda K et al (2019) Bio-mimic motion of 3D-printed gel structures dispersed with magnetic particles. J Electrochem Soc 166:B3235–B3239

    Article  Google Scholar 

  87. Bastola AK, Paudel M, Li L (2018) Development of hybrid magnetorheological elastomers by 3D printing. Polymer 149:213–228

    Article  Google Scholar 

  88. Bastola AK, Hoang VT, Li L (2017) A novel hybrid magnetorheological elastomer developed by 3D printing. Mater Des 114:391–397

    Article  Google Scholar 

  89. Jackson JA, Messner MC, Dudukovic NA et al (2018) Field responsive mechanical metamaterials. Sci Adv 4:eaau6419

    Google Scholar 

  90. Jani MJ, Leary M, Subic A et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  91. Liu S, Zhu J, Lin XD et al (2021) Coupling effect of stretch-bending deformation and electric pulse treatment on phase transformation behavior and superelasticity of a Ti-50.8 at.% Ni alloy. Mater Sci Eng A, 799:140164

    Google Scholar 

  92. Song YN, Sun QD, Guo K et al (2020) Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Mater Sci Eng, A 793:139879

    Article  Google Scholar 

  93. Wang XB, Yu JY, Liu JW et al (2020) Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit Manuf 36:101545

    Google Scholar 

  94. Saedi S, Moghaddam SN, Amerinatanzi A et al (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560

    Article  Google Scholar 

  95. Lu HZ, Yang C, Luo X et al (2019) Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng, A 763:138166

    Article  Google Scholar 

  96. Zhao CY, Liang HL, Luo SC et al (2020) The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting. J Alloy Compd 817:153288

    Article  Google Scholar 

  97. Ma J, Franco B, Tapia G et al (2017) Spatial control of functional response in 4D-printed active metallic structures. Sci Rep 7:46707

    Article  Google Scholar 

  98. Zhang Q, Hao S, Liu Y et al (2020) The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Appl Mater Today 19:100547

    Article  Google Scholar 

  99. Xiong ZW, Li ZH, Sun Z et al (2019) Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol 35:2238–2242

    Article  Google Scholar 

  100. Zhou Q, Hayat MD, Chen G et al (2019) Selective electron beam melting of NiTi: microstructure, phase transformation and mechanical properties. Mater Sci Eng, A 744:290–298

    Article  Google Scholar 

  101. Wan XM, Feng Y, Lin X et al (2019) Large superelastic recovery and elastocaloric effect in as-deposited additive manufactured Ni50.8Ti49.2 alloy. Appl Phys Lett 114:221903

    Google Scholar 

  102. Hou H, Simsek E, Ma T et al (2019) Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Nature 366:1116–1121

    Google Scholar 

  103. Mazzer EM, Kiminami CS, Gargarella P et al (2014) Atomization and selective laser melting of a Cu-Al-Ni-Mn shape memory alloy. Mater Sci Forum 802:343–348

    Article  Google Scholar 

  104. Gustmann T, Neves A, Kühn U et al (2016) Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit Manuf 11:23–31

    Google Scholar 

  105. Gustmann T, Santos DJM, Gargarella P et al (2016) Properties of Cu-based shape-memory alloys prepared by selective laser melting. Shape Memory and Superelasticity 3:24–36

    Article  Google Scholar 

  106. Gustmann T, Schwab H, Kühn U et al (2018) Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy. Mater Des 153:129–138

    Article  Google Scholar 

  107. Tian J, Zhu WZ, Wei QS et al (2019) Process optimization, microstructures and mechanical properties of a Cu-based shape memory alloy fabricated by selective laser melting. J Alloy Compd 785:754–764

    Article  Google Scholar 

  108. Zhuo L, Song B, Li R et al (2020) Effect of element evaporation on the microstructure and properties of CuZnAl shape memory alloys prepared by selective laser melting. Opt Laser Technol 127:106164

    Article  Google Scholar 

  109. Niendorf T, Brenne F, Krooß P et al (2016) Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by selective laser melting. Metall and Mater Trans A 47:2569–2573

    Article  Google Scholar 

  110. Caputo MP, Waryoba DR, Solomon CV (2020) Sintering effects on additive manufactured Ni-Mn-Ga shape memory alloys: a microstructure and thermal analysis. J Mater Sci 55:5311–5321

    Article  Google Scholar 

  111. Caputo MP, Berkowitz AE, Armstrong A et al (2018) 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys. Addit Manuf 21:579–588

    Google Scholar 

  112. Caputo MP, Solomon CV (2017) A facile method for producing porous parts with complex geometries from ferromagnetic Ni-Mn-Ga shape memory alloys. Mater Lett 200:87–89

    Article  Google Scholar 

  113. Mostafaei A, Vecchis RDP, Stevens EL et al (2018) Sintering regimes and resulting microstructure and properties of binder jet 3D printed Ni-Mn-Ga magnetic shape memory alloys. Acta Mater 154:355–364

    Article  Google Scholar 

  114. Laitinen V, Sozinov A, Saren A et al (2019) Laser powder bed fusion of Ni-Mn-Ga magnetic shape memory alloy. Addit Manuf 30:100891

    Google Scholar 

  115. Taylor SL, Shah RN, Dunand DC (2018) Ni-Mn-Ga micro-trusses via sintering of 3D-printed inks containing elemental powders. Acta Mater 143:20–29

    Article  Google Scholar 

  116. Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni4Ti3 a -precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50:4255–4274

    Article  Google Scholar 

  117. Frenzel J, George EP, Dlouhy A et al (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58:3444–3458

    Article  Google Scholar 

  118. Saedi S, Turabi AS, Andani MT et al (2017) Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater Sci Eng, A 686:1–10

    Article  Google Scholar 

  119. Saedi S, Turabi AS, Andani TM et al (2016) The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloy Compd 677:204–210

    Article  Google Scholar 

  120. Wang XB, Speirs M, Kustov S et al (2018) Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect. Scripta Mater 146:246–250

    Article  Google Scholar 

  121. Dadbakhsh S, Speirs M, Kruth JP et al (2015) Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann Manuf Technol 64:209–212

    Article  Google Scholar 

  122. Li W, Yang Y, Liu J et al (2017) Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting. Acta Mater 136:90–104

    Article  Google Scholar 

  123. Li W, Zhi W, Zhao J et al (2018) Cinnamaldehyde protects VSMCs against ox-LDL-induced proliferation and migration through S arrest and inhibition of p38 JNK/MAPKs and NF-kappaB. Vascular Pharmacol 108:57–66

    Article  Google Scholar 

  124. Belyaev S, Resnina N, Iaparova E et al (2019) Influence of chemical composition of NiTi alloy on the martensite stabilization effect. J Alloy Compd 787:1365–1371

    Article  Google Scholar 

  125. Ren LQ, Zhou XL, Xue JZ et al (2019) Thermal metamaterials with site-specific thermal properties fabricated by 3D magnetic printing. Adv Mater Technol 4:1900296

    Article  Google Scholar 

  126. Lu L, Guo P, Pan YY (2017) Magnetic-field-assisted projection stereolithography for three-dimensional printing of smart structures. J Manuf Sci Eng 139:071008

    Article  Google Scholar 

  127. Kawaguchi M (2016) Dispersion stabilities and rheological properties of fumed silica suspensions. J Dispersion Sci Technol 38:642–660

    Article  Google Scholar 

  128. Xie JQ, Zhang HP, Shao YY et al (2020) Investigation of the performance of fumed silica as flow additive in polyester powder coatings. Coatings 10

    Google Scholar 

  129. Yu R, Yang X, Zhang Y et al (2017) Three-dimensional printing of shape memory composites with epoxy-acrylate hybrid photopolymer. ACS Appl Mater Interfaces 9:1820–1829

    Article  Google Scholar 

  130. Zhao TT, Yu R, Li XP et al (2018) 4D printing of shape memory polyurethane via stereolithography. Eur Polymer J 101:120–126

    Article  Google Scholar 

  131. Kuang X, Chen K, Dunn CK et al (2018) 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl Mater Interfaces 10:7381–7388

    Article  Google Scholar 

  132. Zhang X, Ai JW, Ma Z et al (2019) Binary cooperative flexible magnetoelectric materials working as self-powered tactile sensors. J Mater Chem C 7:8527–8536

    Article  Google Scholar 

  133. Huang L, Jiang R, Wu J et al (2017) Ultrafast digital printing toward 4D shape changing materials. Adv Mater 29:1605390

    Article  Google Scholar 

  134. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  135. Zhang Y, Huang L, Song H et al (2019) 4D printing of a digital shape memory polymer with tunable high performance. ACS Appl Mater Interfaces 11:32408–32413

    Article  Google Scholar 

  136. Chen Y, Molnárová O, Tyc O et al (2019) Recoverability of large strains and deformation twinning in martensite during tensile deformation of NiTi shape memory alloy polycrystals. Acta Mater 180:243–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunze Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, C., Yang, X., Wu, H. (2023). 4D Printing of Stimuli-Responsive Materials. In: Zhou, K. (eds) Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-04721-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04721-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04720-6

  • Online ISBN: 978-3-031-04721-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics