Skip to main content
Log in

Preparations, models, and simulations

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

For Christiane, curatress, amongst many other things, of specimens.

Abstract

This paper proposes an outline for a typology of the different forms that scientific objects can take in the life sciences. The first section discusses preparations (or specimens)—a form of scientific object that accompanied the development of modern biology in different guises from the seventeenth century to the present: as anatomical–morphological specimens, as microscopic cuts, and as biochemical preparations. In the second section, the characteristics of models in biology are discussed. They became prominent from the end of the nineteenth century onwards. Some remarks on the role of simulations—characterising the life sciences of the turn from the twentieth to the twenty-first century—conclude the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For a German version of this paper see Rheinberger (in press).

  2. In a recent research note, Hoffmann (2012) has argued that models should be regarded as the overarching genus. Preparations would therefore be “models in one’s own material”, classical models, accordingly, “models in another material.”

  3. I here stick to the triadic distinction of “index”, “icon”, and “symbol” made by Charles Sanders Peirce (1955).

References

  • Ban, N., et al. (2000). Crystal structure of the large ribosomal subunit at 5-Ångstrom resolution. In R. Garrett, et al. (Eds.), The ribosome. Structure, function, antibiotics, and cellular interactions (pp. 11–20). Washington DC: ASM Press.

    Google Scholar 

  • Bashan, A., et al. (2000). Identification of selected ribosomal compounds in crystallographic maps of procaryotic ribosomal subunits at medium resolution. In R. Garrett, et al. (Eds.), The ribosome. Structure, function, antibiotics, and cellular interactions (pp. 21–33). Washington DC: ASM Press.

    Google Scholar 

  • Baudrillard, J. (1983). Simulations. New York: Semiotext(e).

    Google Scholar 

  • Canguilhem, G. (1968). Modèles et analogies dans la découverte en biologie. In G. Canguilhem (Ed.), Etudes d’histoire et de philosophie des sciences (pp. 305–318). Paris: Vrin.

    Google Scholar 

  • Deleuze, G. (1968). Différence et répétition. Paris: Presses Universitaires de France.

    Google Scholar 

  • Deleuze, G. (1992). Differenz und Wiederholung (trans: Vogl, J.). München: Fink.

  • Deleuze, G. (1995). Difference and repetition (trans: Patton, P.). New York: Columbia University Press.

  • Frege, G. (1966). Über Sinn und Bedeutung. In G. Frege (Ed.), Funktion, Begriff, Bedeutung: Fünf logische Studien (pp. 40–65). Göttingen: Vandenhoeck & Ruprecht.

    Google Scholar 

  • Hoffmann, C. (2012). Probe, Konservat, Modell—Präparat? In K. Ammann & P. Gisler (Eds.), Präparat Bergsturz (pp. 61–69). Luzern/Poschiavo & Chur: Edizioni Periferia & Bündner Kunstmuseum.

    Google Scholar 

  • Lake, J. A., et al. (1974). Ribosome structure as studied by electron microscopy. In M. Nomura, et al. (Eds.), Ribosomes (pp. 543–557). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Oakes, M., et al. (1986). Ribosome structure, function, and evolution: Mapping ribosomal RNA, proteins, and functional sites in three dimensions. In B. Hardesty & G. Kramer (Eds.), Structure, function, and genetics of ribosomes (pp. 47–67). New York: Springer.

    Chapter  Google Scholar 

  • Peirce, C. S. (1955). Logic as semiotic: The theory of signs. In J. Buchler (Ed.), Philosophical writings of Peirce (pp. 98–119). New York: Dover.

    Google Scholar 

  • Ramakrishnan, V., et al. (2000). Progress toward the crystal structure of a bacterial 30S ribosomal subunit. In R. Garrett, et al. (Eds.), The ribosome. Structure, function, antibiotics, and cellular interactions (pp. 3–9). Washington DC: ASM Press.

    Google Scholar 

  • Rheinberger, H.-J. (2003). Präparate—‘Bilder’ ihrer selbst. Eine bildtheoretische Glosse. Bildwelten des Wissens, Kunsthistorisches Jahrbuch für Bildkritik, 1(2), 9–19.

    Google Scholar 

  • Rheinberger, H.-J. (2006). Epistemologie des Konkreten. Frankfurt a.M: Suhrkamp.

    Google Scholar 

  • Rheinberger, H.-J. (2007a). Spurenlesen im Experimentalsystem. In S. Krämer, W. Kogge, & G. Grube (Eds.), Spur: Spurenlesen als Orientierungstechnik und Wissenskunst (pp. 293–308). Frankfurt a.M: Suhrkamp.

    Google Scholar 

  • Rheinberger, H.-J. (2007b). Wie werden aus Spuren Daten, und wie verhalten sich Daten zu Fakten? In: Nach Feierabend (Züricher Jahrbuch für Wissensgeschichte) (Vol. 3, pp. 117–125). Zürich: Diaphanes.

  • Rheinberger, H.-J. (2009). Sichtbar Machen: Visualisierung in den Naturwissenschaften. In K. Sachs-Hombach (Ed.), Bildtheorien: Anthropologische und kulturelle Grundlagen des Visualistic Turn (pp. 127–145). Frankfurt a.M: Suhrkamp.

    Google Scholar 

  • Rheinberger, H.-J. (2010). Molekulare Modelle als epistemische Objekte. Ribosomen im Spiegel von 50 Jahren Forschung. In J. Hennig & U. Andraschke (Eds.), Weltwissen. 300 Jahre Wissenschaften in Berlin. Ausstellungskatalog (pp. 76–81). München: Hirmer.

    Google Scholar 

  • Rheinberger, H.-J. (2011). Infra-experimentality: From traces to data, from data to patterning facts. History of Science, 49, 337–348.

    Google Scholar 

  • Rheinberger, H.-J. (in press). Über den Eigensinn epistemischer Dinge. Berlin: Neofelis.

  • Spirin, A. S. (1969). A model of the functioning ribosome: Locking and unlocking of the ribosome subparticles. The mechanism of protein synthesis. Cold Spring Harbor Symposia on Quantitative Biology, 34, 197–207.

    Article  Google Scholar 

  • Stent, G. S. (1963). Molecular biology of bacterial viruses. San Francisco: Freeman.

    Google Scholar 

  • Traut, R. R., et al. (1974). Protein topography of ribosomal subunit from Escherichia coli. In M. Nomura, et al. (Eds.), Ribosomes (pp. 271–308). New York, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • van Fraassen, B. C., & Sigman, J. (1993). Interpretation in science and in the arts. In G. Levine (Ed.), Realism and representation (pp. 73–99). Madison, NY: University of Wisconsin Press.

    Google Scholar 

  • Watson, J. D. (1965). Molecular biology of the gene. New York, NY: Benjamin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jörg Rheinberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rheinberger, HJ. Preparations, models, and simulations. HPLS 36, 321–334 (2015). https://doi.org/10.1007/s40656-014-0049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40656-014-0049-3

Keywords

Navigation