Skip to main content

Advertisement

Log in

Theories for Past and Future Monsoon Rainfall Changes

  • Climate Change and Atmospheric Circulation (R Chadwick, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Long-standing biases in simulations of past and present climate states and climate model disagreement even in sign of future monsoon rainfall changes evince limitations in our theoretical understanding.

Recent Findings

The dominant theoretical paradigms for understanding monsoon rainfall—convective-quasi equilibrium (CQE), the moist static energy (MSE) budget, and monsoons as local Intertropical Convergence Zone (ITCZ) shifts—all jettison the traditional “land-sea breeze” paradigm. Summer monsoon precipitation falls when the assumptions of CQE are most satisfied but those of the ITCZ shift framework are least satisfied. Zonal asymmetries, changes in ITCZ width and strength, hydrology-vegetation-CO2 coupling, and timescale-dependent responses complicate inferences of monsoon rainfall from paleoclimate proxy records. The MSE budget framework applied to deliberately designed simulations can illuminate key mechanisms underlying monsoon responses to external forcings, presenting a path toward falsifying model projections.

Summary

Sustained, rapid progress in monsoon rainfall theory is urgently needed by society and is plausible based on recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Indo-Asian News Service. India cheers as monsoon arrives; hopes of better farm output raised. Hindustan times. 2010 [cited 2015 Dec 31]; Available from: http://www.hindustantimes.com/india/india-cheers-as-monsoon-arrives-hopes-of-better-farm-output-raised/story-Og0hZJ0ULuibRu4y7CVFpO.html.

  2. Adam O, Schneider T, Brient F, Bischoff T. Relation of the double-ITCZ bias to the atmospheric energy budget in climate models. Geophys Res Lett. 2016;43(14):2016GL069465.

    Article  Google Scholar 

  3. Tierney JE, Pausata FSR, deMenocal PB. Rainfall regimes of the Green Sahara. Sci Adv. 2017;3(1):e1601503.

    Article  CAS  Google Scholar 

  4. Haywood AM, Dowsett HJ, Dolan AM, Rowley D, Abe-Ouchi A, Otto-Bliesner B, et al. The Pliocene Model Intercomparison project (PlioMIP) phase 2: scientific objectives and experimental design. Clim Past. 2016;12(3):663–75.

    Article  Google Scholar 

  5. Shepherd TG. Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci. 2014;7(10):703–8.

    Article  CAS  Google Scholar 

  6. Held IM, Soden BJ. Robust responses of the hydrological cycle to global warming. J Clim. 2006;19(21):5686–99.

    Article  Google Scholar 

  7. • Hill SA, Ming Y, Held IM, Zhao M. A Moist Static Energy Budget–Based Analysis of the Sahel Rainfall Response to Uniform Oceanic Warming. J Clim. 2017;30(15):5637–60. Uses MSE budget to identify simple upped-ante-like mechanism of enhanced Saharan air advection that dries the Sahel under mean SST warming.

    Article  Google Scholar 

  8. Schneider T, Teixeira J, Bretherton CS, Brient F, Pressel KG, Schär C, et al. Climate goals and computing the future of clouds. Nat Clim Chang. 2017;7(1):3–5.

    Article  Google Scholar 

  9. Klein SA, Hall A. Emergent constraints for cloud feedbacks. Curr Clim Change Rep. 2015;1(4):276–87.

    Article  Google Scholar 

  10. Emanuel KA, David Neelin J, Bretherton CS. On large-scale circulations in convecting atmospheres. QJR Meteorol Soc. 1994;120(519):1111–43.

    Article  Google Scholar 

  11. Emanuel KA. On thermally direct circulations in moist atmospheres. J Atmos Sci. 1995;52(9):1529–34.

    Article  Google Scholar 

  12. Nie J, Boos WR, Kuang Z. Observational evaluation of a convective quasi-equilibrium view of monsoons. J Clim. 2010;23(16):4416–28.

    Article  Google Scholar 

  13. Neelin JD, Held IM. Modeling tropical convergence based on the moist static energy budget. Mon Weather Rev. 1987;115(1):3–12.

    Article  Google Scholar 

  14. Chou C, Neelin JD, Su H. Ocean-atmosphere-land feedbacks in an idealized monsoon. QJR Meteorol Soc. 2001;127(576):1869–91.

    Article  Google Scholar 

  15. Chou C, Neelin JD. Mechanisms limiting the southward extent of the south American summer monsoon. Geophys Res Lett. 2001;28(12):2433–6.

    Article  Google Scholar 

  16. Chou C, Neelin JD. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J Clim. 2003;16(3):406–25.

    Article  Google Scholar 

  17. • Biasutti M, Voigt A, Boos WR, Braconnot P, Hargreaves JC, Harrison SP, et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat Geosci. 2018;11(6):392–400. Reviews the ITCZ energetic framework and other conceptual frameworks for monsoon precipitation, emphasizing potential of adapting the ITCZ shifts framework to zonally confined monsoons.

    Article  CAS  Google Scholar 

  18. Diaz M, Boos WR. Barotropic growth of monsoon depressions. Q J R Meteorol Soc. 2019 [cited 2019 Jan 1];0(ja). Available from: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3467.

  19. Adames ÁF, Ming Y. Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: moisture vortex instability. J Atmos Sci. 2018;75(6):2083–106.

    Article  Google Scholar 

  20. Gadgil S. The monsoon system: land–sea breeze or the ITCZ? J Earth Syst Sci. 2018;127(1):1.

    Article  CAS  Google Scholar 

  21. Bordoni S, Schneider T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat Geosci. 2008;1(8):515–9.

    Article  CAS  Google Scholar 

  22. Zhou W, Xie S-P. A hierarchy of idealized monsoons in an intermediate GCM. J Clim. 2018;31(22):9021–36.

    Article  Google Scholar 

  23. Hurley JV, Boos WR. Interannual variability of monsoon precipitation and local subcloud equivalent potential temperature. J Clim. 2013;26(23):9507–27.

    Article  Google Scholar 

  24. Lindzen RS, Nigam S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci. 1987;44(17):2418–36.

    Article  Google Scholar 

  25. Back LE, Bretherton CS. On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J Clim. 2009;22(15):4182–96.

    Article  Google Scholar 

  26. Sobel AH. Simple models of ensemble-averaged tropical precipitation and surface wind, given the sea surface temperature. In: The global circulation of the atmosphere. Princeton University Press; 2007. p. 219–51.

  27. Schneider T, Bordoni S. Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J Atmos Sci. 2008;65(3):915–34.

    Article  Google Scholar 

  28. Walker CC, Schneider T. Eddy influences on Hadley circulations: simulations with an idealized GCM. J Atmos Sci. 2006;63(12):3333–50.

    Article  Google Scholar 

  29. Hill SA, Bordoni S, Mitchell JL. Axisymmetric constraints on cross-equatorial Hadley cell extent. J Atmos Sci. 2019 [cited 2018 Oct 30];Accepted. Available from: https://arxiv.org/abs/1810.11105.

  30. Schneider EK. Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J Atmos Sci. 1977;34(2):280–96.

    Article  Google Scholar 

  31. Held IM, Hou AY. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Sci. 1980;37(3):515–33.

    Article  Google Scholar 

  32. Hsu CJ, Plumb RA. Nonaxisymmetric thermally driven circulations and upper-tropospheric monsoon dynamics. J Atmos Sci. 2000;57(9):1255–76.

    Article  Google Scholar 

  33. Walker CC, Schneider T. Response of idealized Hadley circulations to seasonally varying heating. Geophys Res Lett. 2005;32(6):L06813.

    Article  Google Scholar 

  34. Schneider T. The general circulation of the atmosphere. Annu Rev Earth Planet Sci. 2006;34:655–88.

    Article  CAS  Google Scholar 

  35. Levine XJ, Schneider T. Response of the Hadley circulation to climate change in an Aquaplanet GCM coupled to a simple representation of ocean heat transport. J Atmos Sci. 2011;68(4):769–83.

    Article  Google Scholar 

  36. Levine XJ, Schneider T. Baroclinic eddies and the extent of the Hadley circulation: an idealized GCM study. J Atmos Sci. 2015;72(7):2744–61.

    Article  Google Scholar 

  37. Bordoni S, Schneider T. Regime transitions of steady and time-dependent Hadley circulations: comparison of axisymmetric and Eddy-permitting simulations. J Atmos Sci. 2010;67(5):1643–54.

    Article  Google Scholar 

  38. Shaw TA. On the role of planetary-scale waves in the abrupt seasonal transition of the northern hemisphere general circulation. J Atmos Sci. 2014;71(5):1724–46.

    Article  Google Scholar 

  39. Geen R, Lambert FH, Vallis GK. Regime change behavior during Asian monsoon onset. J Clim. 2018;31(8):3327–48.

    Article  Google Scholar 

  40. Zhai J, Boos W. Regime transitions of cross-equatorial Hadley circulations with zonally asymmetric thermal Forcings. J Atmos Sci. 2015;72(10):3800–18.

    Article  Google Scholar 

  41. Emanuel K. Inferences from simple models of slow, convectively coupled processes. J Atmos Sci. 2019;76(1):195–208.

    Article  Google Scholar 

  42. Neelin JD, Zeng N. A Quasi-Equilibrium Tropical Circulation Model—Formulation. J Atmos Sci. 2000;57(11):1741–66.

    Article  Google Scholar 

  43. Privé NC, Plumb RA. Monsoon dynamics with interactive forcing. Part I: axisymmetric studies. J Atmos Sci. 2007;64(5):1417–30.

    Article  Google Scholar 

  44. Zhai J, Boos WR. The drying tendency of shallow meridional circulations in monsoons. QJR Meteorol Soc. 2017;143(708):2655–64.

    Article  Google Scholar 

  45. Shekhar R, Boos WR. Weakening and shifting of the Saharan shallow meridional circulation during wet years of the West African monsoon. J Clim. 2017;30(18):7399–422.

    Article  Google Scholar 

  46. Emanuel KA. The Lagrangian parcel dynamics of moist symmetric instability. J Atmos Sci. 1983;40(10):2368–76.

    Article  Google Scholar 

  47. • Singh MS. Limits on the extent of the solsticial Hadley cell: the role of planetary rotation. J Atmos Sci. 2019;Submitted. Uses slantwise convective neutrality to generalize the Privé and Plumb 2007 diagnostic for the monsoon rainbelt position to cases with nonzero vertical zonal wind shear.

  48. Adam O, Paldor N. Global circulation in an axially symmetric shallow-water Model, forced by off-equatorial differential heating. J Atmos Sci. 2010;67(4):1275–86.

    Article  Google Scholar 

  49. Neelin JD, Chou C. Su H. tropical drought regions in global warming and El Niño teleconnections. Geophys Res Lett. 2003;30(24):2275.

    Article  Google Scholar 

  50. Chou C, Neelin JD. Mechanisms of global warming impacts on regional tropical precipitation. J Clim. 2004;17(13):2688–701.

    Article  Google Scholar 

  51. Chou C, Neelin JD, Lohmann U, Feichter J. Local and remote impacts of aerosol climate forcing on tropical precipitation. J Clim. 2005 [cited 2014 Apr 30];18(22). Available from: http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=08948755&AN=19883071&h=uNl9092WFmofs5dY6nUpKqBCsGJU7xMZGFcPjThRJzihU5UQloJF4KlKg52KQsi9m65d9hKrM9pXha9tgO9BGw%3D%3D&crl=c.

  52. Boos WR, Kuang Z. Dominant control of the south Asian monsoon by orographic insulation versus plateau heating. Nature. 2010;463(7278):218–22.

    Article  CAS  Google Scholar 

  53. Trenberth KE. Climate diagnostics from global analyses: conservation of mass in ECMWF analyses. J Clim. 1991;4(7):707–22.

    Article  Google Scholar 

  54. Peters ME, Kuang Z, Walker CC. Analysis of Atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J Clim. 2008;21(20):5229–41.

    Article  Google Scholar 

  55. Neelin JD. Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. In: The Global Circulation of the Atmosphere. Princeton University Press; 2007 [cited 2014 Apr 30]. p. 267–301. Available from: http://www.atmos.ucla.edu/~csi/REF/pdfs/gencircrev.pdf.

  56. Zhao M. An Analysis of Global Climate Model Simulated Madden-Julian Oscillation with Fully Closed Moist Static Energy Budget. In: AMS; 2018 [cited 2019 Mar 11]. Available from: https://ams.confex.com/ams/33HURRICANE/webprogram/Paper338683.html.

  57. Wing AA, Reed KA, Satoh M, Stevens B, Bony S, Ohno T. Radiative–convective equilibrium model intercomparison project. Geosci Model Dev. 2018;11(2):793–813.

    Article  CAS  Google Scholar 

  58. • Hill SA, Ming Y, Zhao M. Robust Responses of the Sahelian Hydrological Cycle to Global Warming. J Clim. 2018;31(24):9793–814. Shows that enhanced Saharan air advection into the Sahel is robust across AGCMs under uniform SST warming and attempts to generate an emergent observational constraint based on this mechanism.

    Article  Google Scholar 

  59. He J, Soden BJ. Does the lack of coupling in SST-forced atmosphere-only models limit their usefulness for climate change studies? J Clim. 2015;29(12):4317–25.

    Article  Google Scholar 

  60. He J, Soden BJ. The impact of SST biases on projections of anthropogenic climate change: a greater role for atmosphere-only models? Geophys Res Lett. 2016;43(14):2016GL069803.

    Google Scholar 

  61. Pascale S, Boos WR, Bordoni S, Delworth TL, Kapnick SB, Murakami H, et al. Weakening of the north American monsoon with global warming. Nat Clim Chang. 2017;7(11):806–12.

    Article  Google Scholar 

  62. Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci. 2013;6(6):447–51.

    Article  CAS  Google Scholar 

  63. Ma J, Xie S-P. Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and Atmospheric circulation. J Clim. 2012;26(8):2482–501.

    Article  Google Scholar 

  64. Chadwick R, Boutle I, Martin G. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J Clim. 2013;26(11):3803–22.

    Article  Google Scholar 

  65. Chadwick R, Good P, Andrews T, Martin G. Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys Res Lett. 2014;41(2):610–5.

    Article  Google Scholar 

  66. Chadwick R. Which aspects of CO2 forcing and SST warming cause Most uncertainty in projections of tropical rainfall change over land and ocean? J Clim. 2016;29(7):2493–509.

    Article  Google Scholar 

  67. Chadwick R, Douville H, Skinner CB. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation. Clim Dyn. 2017;49(9–10):3011–29.

    Article  Google Scholar 

  68. Hill SA, Ming Y, Held IM. Mechanisms of forced tropical meridional energy flux change. J Clim. 2015;28(5):1725–42.

    Article  Google Scholar 

  69. GFDL Atmospheric Model Development Team. The new GFDL global atmosphere and land Model AM2–LM2: evaluation with prescribed SST simulations. J Clim. 2004;17(24):4641–73.

    Article  Google Scholar 

  70. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, et al. GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim. 2006;19(5):643–74.

    Article  Google Scholar 

  71. Ming Y, Ramaswamy V. Nonlinear climate and hydrological responses to aerosol effects. J Clim. 2009;22(6):1329–39.

    Article  Google Scholar 

  72. Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, et al. The dynamical Core, physical parameterizations, and basic simulation characteristics of the Atmospheric component AM3 of the GFDL global coupled Model CM3. J Clim. 2011;24(13):3484–519.

    Article  Google Scholar 

  73. Zhao M, Held IM, Lin S-J, Vecchi GA. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim. 2009;22(24):6653–78.

    Article  Google Scholar 

  74. Hwang Y-T, Frierson DMW, Kang SM. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys Res Lett. 2013;40(11):2845–50.

    Article  Google Scholar 

  75. Held IM, Delworth TL, Lu J, Findell KL, Knutson TR. Simulation of Sahel drought in the 20th and 21st centuries. PNAS. 2005;102(50):17891–6.

    Article  CAS  Google Scholar 

  76. Kraus EB. The seasonal excursion of the intertropical convergence zone. Mon Weather Rev. 1977;105(8):1052–5.

    Article  Google Scholar 

  77. Kraus EB. Subtropical droughts and cross-equatorial energy transports. Mon Weather Rev. 1977;105(8):1009–18.

    Article  Google Scholar 

  78. Broccoli AJ, Dahl KA, Stouffer RJ. Response of the ITCZ to northern hemisphere cooling. Geophys Res Lett. 2006;33(1):L01702.

    Article  Google Scholar 

  79. Kang SM, Frierson DMW, Held IM. The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J Atmos Sci. 2009;66(9):2812–27.

    Article  Google Scholar 

  80. Schneider T, Bischoff T, Haug GH. Migrations and dynamics of the intertropical convergence zone. Nature. 2014;513(7516):45–53.

    Article  CAS  Google Scholar 

  81. Bischoff T, Schneider T. Energetic constraints on the position of the intertropical convergence zone. J Clim. 2014;27(13):4937–51.

    Article  Google Scholar 

  82. Bischoff T, Schneider T. The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J Clim. 2016;29(8):2997–3013.

    Article  Google Scholar 

  83. Adam O, Bischoff T, Schneider T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: zonally averaged ITCZ position. J Clim. 2016;29(9):3219–30.

    Article  Google Scholar 

  84. Adam O, Bischoff T, Schneider T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: zonally varying shifts of the ITCZ. J Clim. 2016;29(20):7281–93.

    Article  Google Scholar 

  85. Green B, Marshall J. Coupling of trade winds with ocean circulation damps ITCZ shifts. J Clim. 2017;30(12):4395–411.

    Article  Google Scholar 

  86. Schneider T. Feedback of Atmosphere-Ocean coupling on shifts of the intertropical convergence zone. Geophys Res Lett. 2017;44(22):2017GL075817.

    Article  Google Scholar 

  87. Kang SM, Shin Y, Xie S-P. Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. npj Clim Atmos Sci. 2018;1(1):2.

    Article  Google Scholar 

  88. Frierson DMW, Hwang Y-T, Fučkar NS, Seager R, Kang SM, Donohoe A, et al. Contribution of ocean overturning circulation to tropical rainfall peak in the northern hemisphere. Nat Geosci. 2013;6(11):940–4.

    Article  CAS  Google Scholar 

  89. Harrop BE, Hartmann DL. The role of cloud radiative heating in determining the location of the ITCZ in Aquaplanet simulations. J Clim. 2016;29(8):2741–63.

    Article  Google Scholar 

  90. Clark SK, Ming Y, Held IM, Phillipps PJ. The role of the water vapor feedback in the ITCZ response to hemispherically asymmetric forcings. J Clim. 2018 [cited 2018 Apr 11]; Available from: http://journals.ametsoc.org/doi/10.1175/JCLI-D-17-0723.1.

  91. • Byrne MP, Pendergrass AG, Rapp AD, Wodzicki KR. Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. Curr Clim Change Rep. 2018;4(4):355–70. Demonstrate leading-order importance of ITCZ strength and width changes and consider how to better understand them.

    Article  Google Scholar 

  92. Hilgenbrink CC, Hartmann DL. The response of Hadley circulation extent to an idealized representation of Poleward Ocean heat transport in an Aquaplanet GCM. J Clim. 2018;31(23):9753–70.

    Article  Google Scholar 

  93. Watt-Meyer O, Frierson DMW. ITCZ width controls on Hadley cell extent and Eddy-driven jet position and their response to warming. J Clim. 2019;32(4):1151–66.

    Article  Google Scholar 

  94. Held IM. The general circulation of the atmosphere. In: The general circulation of the atmosphere: 2000 program in geophysical fluid dynamics. Woods Hole Oceanographic Institution; 2000. p. 1–54. (Woods Hole Oceanog. Inst. Tech. Rept.).

  95. Kang SM, Lu J. Expansion of the Hadley cell under global warming: winter versus summer. J Clim. 2012;25(24):8387–93.

    Article  Google Scholar 

  96. Levine XJ, Boos WR. Land surface albedo bias in climate models and its association with tropical rainfall. Geophys Res Lett. 2017;44(12):2017GL072510.

    Article  Google Scholar 

  97. Zhou W, Xie S-P. Intermodel spread of the double-ITCZ bias in coupled GCMs tied to land surface temperature in AMIP GCMs. Geophys Res Lett. 2017;44(15):2017GL074377.

    Article  Google Scholar 

  98. Hwang Y-T, Frierson DMW. Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. PNAS. 2013;110(13):4935–40.

    Article  CAS  Google Scholar 

  99. Xiang B, Zhao M, Held IM, Golaz J-C. Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations. Geophys Res Lett. 2017;44(3):2016GL071992.

    Article  Google Scholar 

  100. Smyth JE, Hill SA, Ming Y. Simulated responses of the West African monsoon and zonal-mean tropical precipitation to Early Holocene orbital forcing. Geophys Res Lett. 2018;45(21):12,049–57.

    Article  Google Scholar 

  101. Liu X, Battisti DS, Donohoe A. Tropical precipitation and cross-Equatorial Ocean heat transport during the mid-Holocene. J Clim. 2017;30(10):3529–47.

    Article  Google Scholar 

  102. Boos WR, Korty RL. Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nature Geosci. 2016 [cited 2016 Nov 28];advance online publication. Available from: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2833.html?cookies=accepted.

  103. Donohoe A, Voigt A. Why Future Shifts in Tropical Precipitation Will Likely Be Small. In: Climate Extremes. American Geophysical Union (AGU); 2017 [cited 2019 Jan 8]. p. 115–37. Available from: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/9781119068020.ch8.

  104. Shekhar R, Boos WR. Improving energy-based estimates of monsoon location in the presence of proximal deserts. J Clim. 2016;29(13):4741–61.

    Article  Google Scholar 

  105. Kang SM, Held IM, Frierson DMW, Zhao M. The response of the ITCZ to extratropical thermal forcing: idealized Slab-Ocean experiments with a GCM. J Clim. 2008;21(14):3521–32.

    Article  Google Scholar 

  106. Faulk S, Mitchell J, Bordoni S. Effects of rotation rate and seasonal forcing on the ITCZ extent in planetary atmospheres. J Atmos Sci. 2017;74(3):665–78.

    Article  Google Scholar 

  107. Gonzalez AO, Slocum CJ, Taft RK, Schubert WH. Dynamics of the ITCZ boundary layer. J Atmos Sci. 2015;73(4):1577–92.

    Article  Google Scholar 

  108. Gonzalez AO, Schubert WH. Violation of Ekman balance in the Eastern Pacific ITCZ boundary layer. J Atmos Sci. 2019;Submitted.

  109. • Roberts WHG, Valdes PJ, Singarayer JS. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophys Res Lett. 2017;44(12):2017GL073103. Demonstrates that relationships between zonal-mean ITCZ and energy transports can differ between seasonal cycle and forced, annual-mean changes and very weakly constrains local precipitation change for most tropical regions.

    Article  Google Scholar 

  110. Held IM. The partitioning of the poleward energy transport between the Tropical Ocean and atmosphere. J Atmos Sci. 2001;58(8):943–8.

    Article  Google Scholar 

  111. Merlis TM, Schneider T, Bordoni S, Eisenman I. Hadley circulation response to orbital precession. Part I: Aquaplanets. J Climate. 2013;26(3):740–53.

    Article  Google Scholar 

  112. Wei H-H, Bordoni S. Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J Adv Model Earth Syst. 2018;10(7):1708–25.

    Article  Google Scholar 

  113. Xiang B, Zhao M, Ming Y, Yu W, Kang SM. Contrasting impacts of radiative forcing in the Southern Ocean versus southern tropics on ITCZ position and energy transport in one GFDL climate Model. J Clim. 2018;31(14):5609–28.

    Article  Google Scholar 

  114. Inoue K, Back LE. Gross moist stability assessment during TOGA COARE: various interpretations of gross moist stability. J Atmos Sci. 2015;72(11):4148–66.

    Article  Google Scholar 

  115. Frierson DMW. The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J Atmos Sci. 2007;64(6):1959–76.

    Article  Google Scholar 

  116. Wheeler M, Kiladis GN. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci. 1999;56(3):374–99.

    Article  Google Scholar 

  117. Frierson DMW. Convectively coupled kelvin waves in an idealized moist general circulation Model. J Atmos Sci. 2007;64(6):2076–90.

    Article  Google Scholar 

  118. Chen G, Held IM. Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys Res Lett. 2007 [cited 2014 Apr 30];34(21). Available from: http://doi.wiley.com/10.1029/2007GL031200.

  119. • Bischoff T, Schneider T, Meckler AN. A Conceptual Model for the Response of Tropical Rainfall to Orbital Variations. J Clim. 2017;30(20):8375–91. Presents conceptual model for tropical precipitation responses to orbital precession and obliquity forcing based in part on ITCZ shifts framework that captures many features of paleoclimate records at various individual sites.

    Article  Google Scholar 

  120. Shanahan TM, McKay NP, Hughen KA, Overpeck JT, Otto-Bliesner B, Heil CW, et al. The time-transgressive termination of the African humid period. Nat Geosci. 2015;8(2):140–4.

    Article  CAS  Google Scholar 

  121. • Boos WR, Storelvmo T. Near-linear response of mean monsoon strength to a broad range of radiative forcings. PNAS. 2016;113(6):1510–5. Identifies fundamental errors in previous simple theoretical models projecting monsoon “tipping points”, and demonstrates that monsoon responses in a GCM to widely varying forcings are very nearly linear.

    Article  CAS  Google Scholar 

  122. • Scheff J, Seager R, Liu H, Coats S. Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming. J Clim. 2017;30(17):6593–609. Shows that, for land, no single catch-all measure of “wetness” exists, and that plant stomatal responses to CO2 can cause commonly used indices of dryness to err.

    Article  Google Scholar 

  123. Scheff J. Drought Indices, Drought Impacts, CO<Subscript>2</Subscript>, and Warming: a Historical and Geologic Perspective. Curr Clim Change Rep. 2018;4(2):202–9.

    Article  Google Scholar 

  124. Swann ALS. Plants and drought in a changing climate. Curr Clim Change Rep. 2018;4(2):192–201.

    Article  Google Scholar 

  125. Berg A, Sheffield J. Climate change and drought: the soil moisture perspective. Curr Clim Change Rep. 2018;4(2):180–91.

    Article  Google Scholar 

  126. Timm O, Köhler P, Timmermann A, Menviel L. Mechanisms for the onset of the African humid period and Sahara greening 14.5–11 ka BP. J Clim. 2010;23(10):2612–33.

    Article  Google Scholar 

  127. Siler N, Roe GH, Armour KC. Insights into the zonal-mean response of the hydrologic cycle to global warming from a diffusive energy balance Model. J Clim. 2018;31(18):7481–93.

    Article  Google Scholar 

  128. Jansen MF, Nadeau L-P, Merlis TM. Transient versus equilibrium response of the Ocean’s overturning circulation to warming. J Clim. 2018;31(13):5147–63.

    Article  Google Scholar 

  129. Burls NJ, Fedorov AV, Sigman DM, Jaccard SL, Tiedemann R, Haug GH. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci Adv. 2017;3(9):e1700156.

    Article  CAS  Google Scholar 

  130. Zhang R, Delworth TL. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett. 2006;33(17):L17712.

    Article  Google Scholar 

  131. Park J-Y, Bader J, Matei D. Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat Commun. 2015;6:5985.

    Article  CAS  Google Scholar 

  132. Seth A, Giannini A, Rojas M, Rauscher SA, Bordoni S, Singh D, et al. Monsoon responses to climate changes—connecting past, present and future. Curr Clim Change Rep. 2019;5(2):63–79.

    Article  Google Scholar 

  133. Shepherd TG, Boyd E, Calel RA, Chapman SC, Dessai S, Dima-West IM, et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim Chang. 2018;151(3):555–71.

    Article  Google Scholar 

  134. Zhao M, Golaz J-C, Held IM, Guo H, Balaji V, Benson R, et al. The GFDL global atmosphere and land Model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. J Adv Model Earth Syst. 2018;10(3):691–734.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Yi Ming, Simona Bordoni, Jonathan Mitchell, Isaac Held, Ming Zhao, Natalie Burls, Martin Singh, Dargan Frierson, Bill Boos, Sarah Kang, Alex Gonzalez, Sean Faulk, David Neelin, Tim Merlis, Ho-Hsuan Wei, and Jack Scheff for conversations that have shaped my thinking on these topics. I also thank Michael Byrne and an anonymous reviewer for insightful reviews of the manuscript.

Funding

This work was supported by a Caltech Foster and Coco Stanback Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer A. Hill.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Climate Change and Atmospheric Circulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, S.A. Theories for Past and Future Monsoon Rainfall Changes. Curr Clim Change Rep 5, 160–171 (2019). https://doi.org/10.1007/s40641-019-00137-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-019-00137-8

Keywords

Navigation