Skip to main content
Log in

Uncovering the role of melatonin in plant stress tolerance

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

In recent years, melatonin has emerged as a popular research topic in the field of plant biology. Since melatonin is implicated in numerous plant developmental processes and stress responses, the exploration of its roles in regulating various physiological and biochemical processes contributing to plant growth and development under normal or stress conditions has become a rapidly progressing field. Melatonin mostly alleviates the adverse effects of environmental or abiotic stresses such as drought, salinity, low or high temperature and heavy metal stress. In addition, several reports have shown that melatonin induces stress tolerance in plants by modulating gene expression and protein modifications. However, such information is scattered and needs to be reviewed in a timely manner to assess the extent of successes and limitations to direct future research. In this review, we highlight the interactions of melatonin with phytohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. Finally, we consider the need for, and approach to, the identification of melatonin receptors and components of melatonin signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghdam MS, Luo Z, Jannatizadeh A, Sheikh-Assadi M, Sharafi Y, Farmani B, Fard JR, Razavi F (2019) Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chem 275:549–556

    Article  CAS  PubMed  Google Scholar 

  • Alhaithloul HAS, Abu-Elsaoud AM, Soliman MH (2020) Abiotic stress tolerance in crop plants: role of phytohormones. In: Fahad S, Saud S, Chen Y, Wu C, Wang D (eds) Abiotic Stress in Plants. Intecopen, London, p 233

    Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A (2021) Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses. Physiol Plant 172(2):820–846

    Article  CAS  PubMed  Google Scholar 

  • Anderson JT, Song BH (2020) Plant adaptation to climate change—where are we? J Syst Evol 58(5):533–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann Bot 121(2):195–207

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Arnao M, Hernández-Ruiz J (2020a) Melatonin in flowering, fruit set and fruit ripening. Plant Reprod 33(2):77–87

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2020b) Is phytomelatonin a new plant hormone? Agronomy 10(1):95

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2021a) Melatonin against environmental plant stressors: a review. Curr Protein Pept Sci 22(5):413–429

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2021b) Melatonin as a plant biostimulant in crops and during post-harvest: a new approach is needed. J Sci Food Agric 101(13):5297–5304

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández‐Ruiz J (2021c) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol 23:7–19

  • Arnao MB, Hernández-Ruiz J, Cano A, CReiter RJ (2021) Melatonin and carbohydrate metabolism in plant cells. Plants 10(9):1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Cano A, Hernández-Ruiz J (2022) Phytomelatonin: an unexpected molecule with amazing performances in plants. J Exp Bot. https://doi.org/10.1093/jxb/erac009

    Article  PubMed  Google Scholar 

  • Beilby MJ, Turi CE, Baker TC, Tymm FJ, Murch SJ (2015) Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown). Plant Signal Behav 10(11):e1082697

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Byeon Y, Back K (2016) Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions. J Pineal Res 60(3):348–359

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Hwang OJ, Lee HJ, Lee K, Back K (2015) Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J Pineal Res 58(4):470–478

    Article  CAS  PubMed  Google Scholar 

  • Choi G-H, Back K (2019) Suppression of melatonin 2-hydroxylase increases melatonin production leading to the enhanced abiotic stress tolerance against cadmium, senescence, salt, and tunicamycin in rice plants. Biomolecules 9(10):589

    Article  CAS  PubMed Central  Google Scholar 

  • Corpas FJ, Rodríguez-Ruiz M, Muñoz-Vargas MA, González-Gordo S, Reiter RJ, Palma JM (2022) Interactions of melatonin, ROS and NO during fruit ripening: an update and prospective view. J Exp Bot. https://doi.org/10.1093/jxb/erac128

    Article  PubMed  Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20(5):1040

    Article  CAS  PubMed Central  Google Scholar 

  • Fan J, Xie Y, Zhang Z, Chen L (2018) Melatonin: a multifunctional factor in plants. Int J Mol Sci 19(5):1528

    Article  CAS  PubMed Central  Google Scholar 

  • Hasan M, Liu C-X, Pan Y-T, Ahammed GJ, Qi Z-Y, Zhou J (2018) Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Hong Y, Zhang Y, Sinumporn S, Yu N, Zhan X, Shen X, Chen D, Yu P, Wu W, Liu Q (2018) Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice. Plant J 95(5):877–891

    Article  CAS  Google Scholar 

  • Hwang OJ, Back K (2019) Melatonin deficiency confers tolerance to multiple abiotic stresses in rice via decreased brassinosteroid levels. Int J Mol Sci 20(20):5173

    Article  CAS  PubMed Central  Google Scholar 

  • Javeed HMR, Ali M, Skalicky M, Nawaz F, Qamar R, Rehman AU, Faheem M, Mubeen M, Iqbal MM, Rahman MHu (2021) Lipoic acid combined with melatonin mitigates oxidative stress and promotes root formation and growth in salt-stressed canola seedlings (Brassica napus L.). Molecules 26(11):3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65(4):e12526

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Lim YP, Lee G-J (2022) Co-ordinated responses to endogenous and environmental triggers allow a well-timed floral transition in plants. Plant Biotechnol Rep. https://doi.org/10.1007/s11816-021-00731-z

    Article  Google Scholar 

  • Khan N, Bano A, Ali S, Babar M (2020a) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90(2):189–203

    Article  CAS  Google Scholar 

  • Khan TA, Fariduddin Q, Nazir F, Saleem M (2020b) Melatonin in business with abiotic stresses in plants. Physiol Mol Biol Plants 26(10):1931–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kul R, Esringü A, Dadasoglu E, Sahin Ü, Turan M, Örs S, Ekinci M, Agar G, Yildirim E (2019) Melatonin: role in increasing plant tolerance in abiotic stress conditions. Abiot Biot Stress Plants 1:19

    Google Scholar 

  • Li X, Tan DX, Jiang D, Liu F (2016) Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J Pineal Res 61(3):328–339

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wei J, Peng Z, Ma W, Yang Q, Song Z, Sun W, Yang W, Yuan L, Xu X (2020) Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. J Pineal Res 68(3):e12640

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yang R, Zheng W, Wu L, Zhang C, Zhang H (2022) Melatonin promotes SGT1-involved signals to ameliorate drought stress adaption in rice. Int J Mol Sci 23(2):599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S (2019) Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 82:25–34

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Erland LA (2021) A Systematic review of melatonin in plants: an example of evolution of literature. Front Plant Sci 12:1060

    Article  Google Scholar 

  • Nawaz K, Chaudhary R, Sarwar A, Ahmad B, Gul A, Hano C, Abbasi BH, Anjum S (2020) Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives. Sustainability 13(1):294

    Article  Google Scholar 

  • Pardo-Hernández M, López-Delacalle M, Rivero RM (2020) ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants 9(11):1078

    Article  CAS  PubMed Central  Google Scholar 

  • Rajora N, Vats S, Raturi G, Thakral V, Kaur S, Rachappanavar V, Kumar M, Kesarwani AK, Sonah H, Sharma TR (2022) Seed priming with melatonin: A promising approach to combat abiotic stress in plants. Plant Stress 4:100071

    Article  CAS  Google Scholar 

  • Ren S, Rutto L, Katuuramu D (2019) Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS ONE 14(8):e0221687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y, Hasanuzzaman M (2020) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10(1):37

    Article  CAS  PubMed Central  Google Scholar 

  • Roychoudhury A, Aftab T (2021) Phytohormones, plant growth regulators and signaling molecules: cross-talk and stress responses. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02755-9

    Article  PubMed  Google Scholar 

  • Sezer I, Kiremit MS, Öztürk E, Subrata BAG, Osman HM, Akay H, Arslan H (2021) Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels. Sci Hortic 288:110376

    Article  CAS  Google Scholar 

  • Shafi A, Singh AK, Zahoor I (2021) Melatonin: Role in abiotic stress resistance and tolerance. In: Aftab T, Hakeem KR (eds) In: Plant growth regulators. Springer, Cham, pp 239–273

    Chapter  Google Scholar 

  • Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P (2018) Melatonin and its effects on plant systems. Molecules 23(9):2352

    Article  CAS  PubMed Central  Google Scholar 

  • Shi H, Wang X, Tan DX, Reiter RJ, Chan Z (2015) Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L.) Pers.). J Pineal Res 59(1):120–131

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chen K, Wei Y, He C (2016) Fundamental issues of melatonin-mediated stress signaling in plants. Front Plant Sci 7:1124

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Love J, Hu W (2017) Melatonin in plants. Front Plant Sci 8:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibaeva T, Markovskaya E, Mamaev A (2018) Phytomelatonin: a review. Biol Bull Rev 8(5):375–388

    Article  Google Scholar 

  • Shomali A, Aliniaeifard S, Didaran F, Lotfi M, Mohammadian M, Seif M, Strobel WR, Sierka E, Kalaji HM (2021) Synergistic effects of melatonin and Gamma-Aminobutyric Acid on protection of photosynthesis system in response to multiple abiotic stressors. Cells 10(7):1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Zhang N, Wang J, Cao Y, Li X, Zhang H, Zhang L, Tan DX, Guo YD (2016) A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J Pineal Res 61(2):138–153

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Liu L, Wang L, Li B, Jin C, Lin X (2021) Melatonin: A master regulator of plant development and stress responses. J Integr Plant Biol 63(1):126–145

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RK, Lal MK, Naga KC, Kumar R, Chourasia KN, Subhash S, Kumar D, Sharma S (2020) Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci Hortic 272:109592

    Article  CAS  Google Scholar 

  • Tripathi GD, Javed Z, Mishra M, Fasake V, Dashora K (2021) Phytomelatonin in stress management in agriculture. Heliyon 7(3):e06150

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan J, Zhang P, Wang R, Sun L, Ju Q, Xu J (2018) Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biol 18(1):1–14

    Article  CAS  Google Scholar 

  • Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69(5):963–974

    Article  CAS  PubMed  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9(3):e93462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiong F, Zhuo F, Reiter RJ, Wang L, Wei Z, Deng K, Song Y, Qanmber G, Feng L, Yang Z (2019) Hypocotyl elongation inhibition of melatonin is involved in repressing brassinosteroid biosynthesis in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01082

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Jing X, Tang H, Li X, Gong B, Shi Q (2019) Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant Cell Physiol 60(9):2051–2064

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xu H, Li D, Gao X, Li T, Wang R (2018) Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56(3):884–892

    Article  CAS  Google Scholar 

  • Yang L, Sun Q, Wang Y, Chan Z (2021) Global transcriptomic network of melatonin regulated root growth in Arabidopsis. Gene 764:145082

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X (2016) Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plant 38(2):1–13

    Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45

    Article  CAS  Google Scholar 

  • Zhao D, Wang H, Chen S, Yu D, Reiter RJ (2021a) Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends Plant Sci 26(1):70–82

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y-Q, Zhang Z-W, Chen Y-E, Ding C-B, Yuan S, Reiter RJ, Yuan M (2021b) Melatonin: a potential agent in delaying leaf senescence. Crit Rev Plant Sci 40(1):1–22

    Article  CAS  Google Scholar 

  • Zhao C, Nawaz G, Cao Q, Xu T (2022) Melatonin is a potential target for improving horticultural crop resistance to abiotic stress. Sci Hortic 291:110560

    Article  CAS  Google Scholar 

  • Zia S (2020) Investigation of the Effect of Melatonin in Arabidopsis thaliana and Soil Microbes. La Trobe University

Download references

Author information

Authors and Affiliations

Authors

Contributions

AA and AKS: wrote and designed the article, SF and GY: edit and revised the initial draft, ZAZ and HRA: supervised and revised the final draft of article, MAF: conceptualized, wrote and revised the article with contributions of all the authors.

Corresponding author

Correspondence to Muhammad Ahsan Farooq.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyaz, A., Shahzadi, A.K., Fatima, S. et al. Uncovering the role of melatonin in plant stress tolerance. Theor. Exp. Plant Physiol. 34, 335–346 (2022). https://doi.org/10.1007/s40626-022-00255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-022-00255-z

Keywords

Navigation