Skip to main content

Advertisement

Log in

Protein-bound uremic toxin lowering strategies in chronic kidney disease: a systematic review and meta-analysis

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Introduction

Accumulation of protein-bound uremic toxins, including indoxyl sulfate and p-cresyl sulfate, are associated with increased cardiovascular disease and mortality in chronic kidney disease (CKD). We performed a systematic review and meta-analysis to synthesize the available strategies for lowering protein-bound uremic toxin levels in CKD patients.

Methods

We conducted a meta-analysis by searching the databases of MEDLINE, Scopus, and the Cochrane Central Register of Controlled Trials for observational studies and randomized controlled trials (RCTs) that examined the effect of dietary protein restrictions, biotic supplements (including prebiotics, probiotics, and synbiotics), AST-120, dialysis techniques, and the outcome of preservation of residual renal function (RRF) on indoxyl sulfate and p-cresyl sulfate levels. Random-effect model meta-analyses were used to compute changes in the outcomes of interest.

Results

A total of 38 articles (2,492 patients), comprising 28 RCTs, 8 single-arm or prospective cohort studies, and 2 cross-sectional studies were included in this meta-analysis. When compared with placebo, prebiotics, synbiotics, and AST-120 provided significantly lower levels of both serum indoxyl sulfate and p-cresyl sulfate. There were no significant reductions in serum indoxyl sulfate and p-cresyl sulfate levels in patients receiving probiotics. Preservation of RRF in dialysis patients resulted in lower levels of both of the protein-bound uremic toxins. When compared with conventional hemodialysis, hemodiafiltration significantly decreased serum p-cresyl sulfate alone, whereas a significant change in serum indoxyl sulfate levels was observed only in studies with long-term observation periods. Very low protein diet (VLPD) and other oral medications yielded insignificant differences in protein-bound uremic toxins.

Conclusions

The present meta-analysis demonstrated that prebiotics, synbiotics, and AST-120 can effectively reduce both serum indoxyl sulfate and p-cresyl sulfate in CKD patients when compared with placebo. Preservation of RRF was associated with lower serum indoxyl sulfate and p-cresyl sulfate levels. The effect of biotic supplements was detected only in dialysis patients. For non-dialysis CKD patients, the results were limited due to the small number of studies. Further studies are needed to determine the efficacy in these populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fujii H, Goto S, Fukagawa M. Role of uremic toxins for kidney, cardiovascular, and bone dysfunction. Toxins (Basel). 2018;10(5).

  2. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P et al (2003) Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int 63(5):1934–1943

    Article  PubMed  CAS  Google Scholar 

  3. Sirich TL, Meyer TW (2018) Intensive hemodialysis fails to reduce plasma levels of uremic solutes. Clin J Am Soc Nephrol 13(3):361–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lekawanvijit S, Kompa AR, Krum H (2016) Protein-bound uremic toxins: A long overlooked culprit in cardiorenal syndrome. Am J Physiol Renal Physiol 311(1):F52-62

    Article  PubMed  CAS  Google Scholar 

  5. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  Google Scholar 

  6. Evenepoel P, Meijers BK, Bammens BR, Verbeke K (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl 114:S12–S19

    Article  CAS  Google Scholar 

  7. Niwa T (2010) Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr 20(5 Suppl):S2-6

    Article  PubMed  CAS  Google Scholar 

  8. Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. P-cresyl sulfate. Toxins (Basel). 2017;9(2).

  9. Lekawanvijit S, Kompa AR, Manabe M, Wang BH, Langham RG, Nishijima F et al (2012) Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate. PLoS ONE 7(7):e41281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lin CJ, Wu V, Wu PC, Wu CJ (2015) Meta-analysis of the associations of p-cresyl sulfate (p-cresyl sulfate) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 10(7):e0132589

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl sulfate: A novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc. 2017;6(2).

  12. Meijers BK, Van Kerckhoven S, Verbeke K, Dehaen W, Vanrenterghem Y, Hoylaerts MF et al (2009) The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis 54(5):891–901

    Article  PubMed  CAS  Google Scholar 

  13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 339:b2700

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clark HD, Wells GA, Huet C, McAlister FA, Salmi LR, Fergusson D et al (1999) Assessing the quality of randomized trials: Reliability of the Jadad scale. Control Clin Trials 20(5):448–452

    Article  PubMed  CAS  Google Scholar 

  15. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  PubMed  Google Scholar 

  16. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J (2006) Assessing heterogeneity in meta-analysis: Q statistic or i2 index? Psychol Methods 11(2):193–206

    Article  PubMed  Google Scholar 

  17. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D et al (2013) Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif 35(1–3):196–201

    Article  PubMed  CAS  Google Scholar 

  19. Di Iorio BR, Rocchetti MT, De Angelis M, Cosola C, Marzocco S, Di Micco L, et al. Nutritional therapy modulates intestinal microbiota and reduces serum levels of total and free indoxyl sulfate and p-cresyl sulfate in chronic kidney disease (MEDIKA study). J Clin Med. 2019;8(9).

  20. Black AP, Anjos JS, Cardozo L, Carmo FL, Dolenga CJ, Nakao LS et al (2018) Does low-protein diet influence the uremic toxin serum levels from the gut microbiota in non-dialysis chronic kidney disease patients? J Ren Nutr 28(3):208–214

    Article  PubMed  CAS  Google Scholar 

  21. Meijers BK, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P (2010) P-cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25(1):219–224

    Article  PubMed  CAS  Google Scholar 

  22. Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Esgalhado M, Kemp JA, Azevedo R, Paiva BR, Stockler-Pinto MB, Dolenga CJ et al (2018) Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food Funct 9(12):6508–6516

    Article  PubMed  CAS  Google Scholar 

  24. Khosroshahi HT, Abedi B, Ghojazadeh M, Samadi A, Jouyban A (2019) Effects of fermentable high fiber diet supplementation on gut derived and conventional nitrogenous product in patients on maintenance hemodialysis: A randomized controlled trial. Nutr Metab (Lond) 16:18

    Article  Google Scholar 

  25. Takayama F, Taki K, Niwa T (2003) Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 41(3 Suppl 1):S142–S145

    Article  PubMed  Google Scholar 

  26. Mafra D, Alvarenga Borges N, Nakau L, Dolenga C, Bergman P, Stenvinkel P (2017) Mp431effects of probiotic supplementation on uremic toxins levels in non-dialysis CKD patients. Nephrol Dial Transplant 32(suppl_3):iii587–iii8

    Article  Google Scholar 

  27. Borges NA, Carmo FL, Stockler-Pinto MB, de Brito JS, Dolenga CJ, Ferreira DC et al (2018) Probiotic supplementation in chronic kidney disease: A double-blind, randomized, placebo-controlled trial. J Ren Nutr 28(1):28–36

    Article  PubMed  CAS  Google Scholar 

  28. Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K et al (2011) Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: A preliminary study. Nephrol Dial Transplant 26(3):1094–1098

    Article  PubMed  CAS  Google Scholar 

  29. Guida B, Germano R, Trio R, Russo D, Memoli B, Grumetto L et al (2014) Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: A randomized clinical trial. Nutr Metab Cardiovasc Dis 24(9):1043–1049

    Article  PubMed  CAS  Google Scholar 

  30. Rossi M, Johnson DW, Xu H, Carrero JJ, Pascoe E, French C et al (2015) Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr Metab Cardiovasc Dis 25(9):860–865

    Article  PubMed  CAS  Google Scholar 

  31. Mady G, Sarhan I, Shawky S, Halim A, Mehanna N, Abdallah M. Effect of probiotics on serum indoxyl sulphate in haemodialysis patients. QJM: 2018;111(suppl_1).

  32. Soliman Ahmed Y, Ibrahim Sarhaan E, Shaker Mehanna N, Saeed Hassan M, Abd-El Nasier Abd-El Gawad M, Nagdy Madbouli N. The effect of synbiotics on serum indoxyl sulfate in maintenance haemodialysis patients. QJM: 2018;111(suppl_1).

  33. Lopes R, Theodoro JMV, da Silva BP, Queiroz VAV, de Castro Moreira ME, Mantovani HC et al (2019) Synbiotic meal decreases uremic toxins in hemodialysis individuals: A placebo-controlled trial. Food Res Int 116:241–248

    Article  PubMed  CAS  Google Scholar 

  34. Niwa T, Miyazaki T, Tsukushi S, Maeda K, Tsubakihara Y, Owada A et al (1996) Accumulation of indoxyl-beta-d-glucuronide in uremic serum: Suppression of its production by oral sorbent and efficient removal by hemodialysis. Nephron 74(1):72–78

    Article  PubMed  CAS  Google Scholar 

  35. Iida S, Kohno K, Yoshimura J, Ueda S, Usui M, Miyazaki H et al (2006) Carbonic-adsorbent ast-120 reduces overload of indoxyl sulfate and the plasma level of TGF-beta1 in patients with chronic renal failure. Clin Exp Nephrol 10(4):262–267

    Article  PubMed  CAS  Google Scholar 

  36. Schulman G, Agarwal R, Acharya M, Berl T, Blumenthal S, Kopyt N (2006) A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of ast-120 (kremezin) in patients with moderate to severe ckd. Am J Kidney Dis 47(4):565–577

    Article  PubMed  CAS  Google Scholar 

  37. Lee CT, Hsu CY, Tain YL, Ng HY, Cheng BC, Yang CC et al (2014) Effects of AST-120 on blood concentrations of protein-bound uremic toxins and biomarkers of cardiovascular risk in chronic dialysis patients. Blood Purif 37(1):76–83

    Article  PubMed  CAS  Google Scholar 

  38. Wu IW, Hsu KH, Sun CY, Tsai CJ, Wu MS, Lee CC (2014) Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on stage 5 chronic kidney disease patients: A randomized crossover study. Nephrol Dial Transplant 29(9):1719–1727

    Article  PubMed  CAS  Google Scholar 

  39. Cha RH, Kang SW, Park CW, Cha DR, Na KY, Kim SG et al (2016) A randomized, controlled trial of oral intestinal sorbent AST-120 on renal function deterioration in patients with advanced renal dysfunction. Clin J Am Soc Nephrol 11(4):559–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Anraku M, Tanaka M, Hiraga A, Nagumo K, Imafuku T, Maezaki Y et al (2014) Effects of chitosan on oxidative stress and related factors in hemodialysis patients. Carbohydr Polym 112:152–157

    Article  PubMed  CAS  Google Scholar 

  41. Chen X, Gao S, Ruan M, Chen S, Xu J, Xing X, et al. Shen-shuai-ning granule decreased serum concentrations of indoxyl sulphate in uremic patients undergoing peritoneal dialysis. Biosci Rep. 2018;38(5).

  42. Riccio E, Sabbatini M, Bruzzese D, Grumetto L, Marchetiello C, Amicone M et al (2018) Plasma p-cresol lowering effect of sevelamer in non-dialysis CKD patients: Evidence from a randomized controlled trial. Clin Exp Nephrol 22(3):529–538

    Article  PubMed  CAS  Google Scholar 

  43. Lenglet A, Fabresse N, Taupin M, Gomila C, Liabeuf S, Kamel S et al (2019) Does the administration of sevelamer or nicotinamide modify uremic toxins or endotoxemia in chronic hemodialysis patients? Drugs 79(8):855–862

    Article  PubMed  CAS  Google Scholar 

  44. Krieter DH, Hackl A, Rodriguez A, Chenine L, Moragues HL, Lemke HD et al (2010) Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration. Nephrol Dial Transplant 25(1):212–218

    Article  PubMed  CAS  Google Scholar 

  45. Cornelis T, Eloot S, Vanholder R, Glorieux G, van der Sande FM, Scheijen JL et al (2015) Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrol Dial Transplant 30(8):1395–1402

    Article  PubMed  CAS  Google Scholar 

  46. Panichi V, Rocchetti MT, Scatena A, Rosati A, Migliori M, Pizzarelli F et al (2017) Long term variation of serum levels of uremic toxins in patients treated by post-dilution high volume on-line hemodiafiltration in comparison to standard low-flux bicarbonate dialysis: Results from the redert study. J Nephrol 30(4):583–591

    Article  PubMed  CAS  Google Scholar 

  47. ElSayed H, ElSharkawy M, Taha W, Sayed H, Kotb M, Abdelmohsen W. Fp438study of the effects of hemodiafiltration versus hemodialysis on DNA methylation and indoxyl sulfate removal. Nephrol Dial Transplant. 2018;33(suppl_1):i182-i.

  48. Krieter DH, Kerwagen S, Ruth M, Lemke HD, Wanner C. Differences in dialysis efficacy have limited effects on protein-bound uremic toxins plasma levels over time. Toxins (Basel). 2019;11(1).

  49. Fagugli RM, De Smet R, Buoncristiani U, Lameire N, Vanholder R (2002) Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am J Kidney Dis 40(2):339–347

    Article  PubMed  CAS  Google Scholar 

  50. Yamamoto S, Sato M, Sato Y, Wakamatsu T, Takahashi Y, Iguchi A et al (2018) Adsorption of protein-bound uremic toxins through direct hemoperfusion with hexadecyl-immobilized cellulose beads in patients undergoing hemodialysis. Artif Organs 42(1):88–93

    Article  PubMed  CAS  Google Scholar 

  51. Hyspler R, Ticha A, Safranek R, Moucka P, Nyvltova Z, Stochlova K et al (2018) Indoxyl sulfate elimination in renal replacement therapy: Influence of citrate- versus acetate-buffering component during bicarbonate dialysis. Dis Markers 2018:3985861

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jung SW, Ihm HS, Lee JY, Cho KS, Kim JS, Lee TW, et al. Sp366effects of citrate dialysis fluid on cell damage, uremic toxin, and inflammation in patients with maintenance hemodialysis. Nephrol Dial Transplant. 2018;33(suppl_1):i469-i.

  53. Viaene L, Meijers B, Vanrenterghem Y, Evenepoel P (2012) Daytime rhythm and treatment-related fluctuations of serum phosphorus concentration in dialysis patients. Am J Nephrol 35(3):242–248

    Article  PubMed  CAS  Google Scholar 

  54. Huang JY, Hsu CW, Yang CW, Hung CC, Huang WH (2016) Role of anuria in the relationship between indoxyl sulfate and anemia in peritoneal dialysis patients. Ther Clin Risk Manag 12:1797–1803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Snauwaert E, Holvoet E, Van Biesen W, Raes A, Glorieux G, Vande Walle J, et al. Uremic toxin concentrations are related to residual kidney function in the pediatric hemodialysis population. Toxins (Basel). 2019;11(4).

  56. Ko GJ, Obi Y, Tortorici AR, Kalantar-Zadeh K (2017) Dietary protein intake and chronic kidney disease. Curr Opin Clin Nutr Metab Care 20(1):77–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chewcharat A, Takkavatakarn K, Wongrattanagorn S, Panrong K, Kittiskulnam P, Eiam-Ong S, et al. The effects of restricted protein diet supplemented with ketoanalogue on renal function, blood pressure, nutritional status, and chronic kidney disease-mineral and bone disorder in chronic kidney disease patients: A systematic review and meta-analysis. J Ren Nutr. 2019.

  58. Koppe L, Mafra D, Fouque D (2015) Probiotics and chronic kidney disease. Kidney Int 88(5):958–966

    Article  PubMed  CAS  Google Scholar 

  59. Sreeja V, Prajapati JB (2013) Probiotic formulations: Application and status as pharmaceuticals-a review. Probiotics Antimicrob Proteins 5(2):81–91

    Article  PubMed  CAS  Google Scholar 

  60. McFarlane C, Ramos CI, Johnson DW, Campbell KL (2019) Prebiotic, probiotic, and synbiotic supplementation in chronic kidney disease: A systematic review and meta-analysis. J Ren Nutr 29(3):209–220

    Article  PubMed  CAS  Google Scholar 

  61. Vaziri ND, Zhao YY, Pahl MV (2016) Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 31(5):737–746

    Article  PubMed  CAS  Google Scholar 

  62. Asai M, Kumakura S, Kikuchi M (2019) Review of the efficacy of ast-120 (kremezin) on renal function in chronic kidney disease patients. Ren Fail 41(1):47–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chen YC, Wu MY, Hu PJ, Chen TT, Shen WC, Chang WC, et al. Effects and safety of an oral adsorbent on chronic kidney disease progression: A systematic review and meta-analysis. J Clin Med. 2019;8(10).

  64. Blankestijn PJ, Grooteman MP, Nube MJ, Bots ML. Clinical evidence on haemodiafiltration. Nephrol Dial Transplant. 2018;33(suppl_3):iii53-iii8.

  65. Marron B, Remon C, Perez-Fontan M, Quiros P, Ortiz A (2008) Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int Suppl 108:S42-51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweena Susantitaphong.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Ethical approval

For this type of study, ethical approval is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takkavatakarn, K., Wuttiputinun, T., Phannajit, J. et al. Protein-bound uremic toxin lowering strategies in chronic kidney disease: a systematic review and meta-analysis. J Nephrol 34, 1805–1817 (2021). https://doi.org/10.1007/s40620-020-00955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00955-2

Keywords

Navigation