Skip to main content

Advertisement

Log in

Effects of Probiotics on Inflammation and Uremic Toxins Among Patients on Dialysis: A Systematic Review and Meta-Analysis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Objectives

We performed this systematic review and meta-analysis to evaluate effects of probiotics on inflammation, uremic toxins, and gastrointestinal (GI) symptoms in end-stage renal disease (ESRD) patients.

Methods

A literature search was conducted utilizing MEDLINE, EMBASE, and Cochrane Database from inception through October 2017. We included studies that assessed assessing effects of probiotics on inflammatory markers, protein-bound uremic toxins (PBUTs), and GI symptoms in ESRD patients on dialysis. Effect estimates from the individual study were extracted and combined utilizing random effect, generic inverse variance method of DerSimonian and Laird. The protocol for this meta-analysis is registered with PROSPERO; No. CRD42017082137.

Results

Seven clinical trials with 178 ESRD patients were enrolled. There was a significant reduction in serum C-reactive protein (CRP) from baseline to post-probiotic course (≥ 2 months after treatment) with standardized mean difference (SMD) of − 0.42 (95% CI − 0.68 to − 0.16, p = 0.002). When compared to control, patients who received probiotics also had a significant higher degree of reduction in CRP level with SMDs of − 0.37 (95% CI − 0.72 to 0.03, p = 0.04). However, there were no significant changes in serum TNF-alpha or albumin with SMDs of − 0.32 (95% CI − 0.92 to 0.28, p = 0.29) and 0.16 (95% CI − 0.20 to 0.53, p = 0.39), respectively. After probiotic course, there were also significant decrease in PBUTs and improvement in overall GI symptoms (reduction in GI symptom scores) with SMDs of − 0.61 (95% CI − 1.16 to − 0.07, p = 0.03) and − 1.04 (95% CI − 1.70 to − 0.38, p = 0.002), respectively.

Conclusion

Our study demonstrates potential beneficial effects of probiotics on inflammation, uremic toxins, and GI Symptoms in ESRD patients. Future large-scale clinical studies are required to assess its benefits on other important clinical outcomes including patient mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. NIH. Kidney Disease Statistics for the United States. 2016. Available at: https://www.niddk.nih.gov/health-information/health-statistics/kidney-disease. Accessed December 20, 2017.

  2. American Diabetes Association. Older adults. Sec. 11. In standards of medical care in diabetes-2017. Diabetes Care. 2017;40:S99–S104.

    Article  Google Scholar 

  3. USRDS U. Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. 2013. https://www.usrds.org/2013/pdf/v1_00_intro_13.pdf. Accessed December 20, 2017.

  4. Anderson S, Halter JB, Hazzard WR, et al. Prediction, progression, and outcomes of chronic kidney disease in older adults. J Am Soc Nephrol. 2009;20:1199–1209.

    Article  CAS  PubMed  Google Scholar 

  5. Sanguankeo A, Upala S, Cheungpasitporn W, Ungprasert P, Knight EL. Effects of statins on renal outcome in chronic kidney disease patients: a systematic review and meta-analysis. PLoS One. 2015;10:e0132970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nissenson AR. Improving outcomes for ESRD patients: shifting the quality paradigm. Clin J Am Soc Nephrol. 2014;9:430–434.

    Article  PubMed  Google Scholar 

  7. Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol. 2017;32:2005–2014.

    Article  PubMed  Google Scholar 

  8. Kahrstrom CT, Pariente N, Weiss U. Intestinal microbiota in health and disease. Nature. 2016;535:47.

    Article  CAS  PubMed  Google Scholar 

  9. Di Iorio BR, Marzocco S, Nardone L, et al. Urea and impairment of the gut-kidney axis in chronic kidney disease. G Ital Nefrol. 2017;34:19.

    Google Scholar 

  10. Firouzi S, Haghighatdoost F. The effects of prebiotic, probiotic, and synbiotic supplementation on blood parameters of renal function: a systematic review and meta-analysis of clinical trials. Nutrition. 2018;51–52:104–113.

    Article  CAS  PubMed  Google Scholar 

  11. Rossi M, Johnson DW, Campbell KL. The kidney-gut axis: implications for nutrition care. J Ren Nutr. 2015;25:399–403.

    Article  CAS  PubMed  Google Scholar 

  12. Rossi M, Johnson DW, Morrison M, et al. SYNbiotics easing renal failure by improving gut microbiology (SYNERGY): a protocol of placebo-controlled randomised cross-over trial. BMC Nephrol. 2014;15:106.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rossi M, Johnson DW, Morrison M, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016;11:223–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charbonneau MR, Blanton LV, DiGiulio DB, et al. A microbial perspective of human developmental biology. Nature. 2016;535:48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwashita Y, Ohya M, Yashiro M, et al. Dietary changes involving bifidobacterium longum and other nutrients delays chronic kidney disease progression. Am J Nephrol. 2018;47:325–332.

    Article  CAS  PubMed  Google Scholar 

  16. Borges NA, Stenvinkel P, Bergman P, Qureshi AR, Lindholm B, Moraes C, et al. Effects of probiotic supplementation on trimethylamine-N-oxide plasma levels in hemodialysis patients: a pilot study. Probiotics Antimicrob Proteins. 2018. https://doi.org/10.1007/s12602-018-9411-1.

    Article  Google Scholar 

  17. Lau WL, Savoj J, Nakata MB, Vaziri ND. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin Sci (Lond). 2018;132:509–522.

    Article  CAS  Google Scholar 

  18. Antza C, Stabouli S, Kotsis V. Gut microbiota in kidney disease and hypertension. Pharmacol Res. 2018;130:198–203.

    Article  CAS  PubMed  Google Scholar 

  19. Neto MPC, Aquino JS, da Silva LFR, et al. Gut microbiota and probiotics intervention: a potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacol Res. 2018;130:152–163.

    Article  CAS  Google Scholar 

  20. Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, et al. Gut microbiota, hypertension and chronic kidney disease: recent advances. Pharmacol Res. 2018. https://doi.org/10.1016/j.phrs.2018.01.013.

    Article  PubMed  Google Scholar 

  21. Jovanovich A, Isakova T, Stubbs J. Microbiome and cardiovascular disease in CKD. Clin J Am Soc Nephrol. 2018. https://doi.org/10.2215/CJN.12691117.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vaziri ND. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens. 2012;21:587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaziri ND. Effect of synbiotic therapy on gut-derived uremic toxins and the intestinal microbiome in patients with CKD. Clin J Am Soc Nephrol. 2016;11:199–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Emal D, Rampanelli E, Stroo I, et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2017;28:1450–1461.

    Article  CAS  PubMed  Google Scholar 

  25. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–670.

    Article  CAS  PubMed  Google Scholar 

  26. Noel S, Martina-Lingua MN, Bandapalle S, et al. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease. Nephron Clin Pract. 2014;127:139–143.

    Article  CAS  PubMed  Google Scholar 

  27. Schwenger EM, Tejani AM, Loewen PS. Probiotics for preventing urinary tract infections in adults and children. Cochrane Database Syst Rev. 2015;12:CD008772.

    Google Scholar 

  28. Kirk J, Dunker KS. Dietary counseling: the ingredient for successfully addressing the use of herbal supplements and probiotics in chronic kidney disease. Adv Chronic Kidney Dis. 2014;21:377–384.

    Article  PubMed  Google Scholar 

  29. Abratt VR, Reid SJ. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol. 2010;72:63–87.

    Article  CAS  PubMed  Google Scholar 

  30. Vitetta L, Gobe G. Uremia and chronic kidney disease: the role of the gut microflora and therapies with pro- and prebiotics. Mol Nutr Food Res. 2013;57:824–832.

    Article  CAS  PubMed  Google Scholar 

  31. Wei M, Wang Z, Liu H, et al. Probiotic Bifidobacterium animalis subsp. lactis Bi-07 alleviates bacterial translocation and ameliorates microinflammation in experimental uraemia. Nephrology (Carlton). 2014;19:500–506.

    Article  CAS  Google Scholar 

  32. Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins (Basel). 2018;10:287.

    Article  CAS  Google Scholar 

  33. Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant. 2015;30:924–933.

    Article  CAS  PubMed  Google Scholar 

  34. Sabatino A, Regolisti G, Cosola C, Gesualdo L, Fiaccadori E. Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr Diab Rep. 2017;17:16.

    Article  CAS  PubMed  Google Scholar 

  35. Dehghani H, Heidari F, Mozaffari-Khosravi H, Nouri-Majelan N, Dehghani A. Synbiotic supplementations for azotemia in patients with chronic kidney disease: a randomized controlled trial. Iran J Kidney Dis. 2016;10:351–357.

    PubMed  Google Scholar 

  36. Stecher B, Chaffron S, Kappeli R, et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:e1000711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2015;42:1051–1063.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmad S, Bromberg JS. Current status of the microbiome in renal transplantation. Curr Opin Nephrol Hypertens. 2016;25:570–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mulligan ME. Epidemiology of Clostridium difficile-induced intestinal disease. Rev Infect Dis. 1984;6:S222–S228.

    Article  PubMed  Google Scholar 

  41. Yamashiro Y. Gut microbiota in health and disease. Ann Nutr Metab. 2017;71:242–246.

    Article  CAS  PubMed  Google Scholar 

  42. Ardalan M, Vahed SZ. Gut microbiota and renal transplant outcome. Biomed Pharmacother. 2017;90:229–236.

    Article  CAS  PubMed  Google Scholar 

  43. Pluznick JL. Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int. 2016;90:1191–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017;32:921–931.

    Article  PubMed  Google Scholar 

  45. Briskey D, Tucker P, Johnson DW, Coombes JS. The role of the gastrointestinal tract and microbiota on uremic toxins and chronic kidney disease development. Clin Exp Nephrol. 2017;21:7–15.

    Article  CAS  PubMed  Google Scholar 

  46. Upadhyay V, Fu YX, Bromberg JS. From infection to colonization: the role of microbiota in transplantation. Am J Transplant. 2013;13:829.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wanchai K, Pongchaidecha A, Chatsudthipong V, Chattipakorn SC, Chattipakorn N, Lungkaphin A. Role of gastrointestinal microbiota on kidney injury and the obese condition. Am J Med Sci. 2017;353:59–69.

    Article  PubMed  Google Scholar 

  48. Soleimani A, Zarrati Mojarrad M, Bahmani F, et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. Kidney Int. 2017;91:435–442.

    Article  CAS  PubMed  Google Scholar 

  49. Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int. 2015;88:958–966.

    Article  CAS  PubMed  Google Scholar 

  50. Wang IK, Wu YY, Yang YF, et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes. 2015;6:423–430.

    Article  PubMed  Google Scholar 

  51. Simoes-Silva L, Araujo R, Pestana M, Soares-Silva I, Sampaio-Maia B. The microbiome in chronic kidney disease patients undergoing hemodialysis and peritoneal dialysis. Pharmacol Res. 2018;130:143–151.

    Article  CAS  PubMed  Google Scholar 

  52. Ranganathan N, Ranganathan P, Friedman EA, et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther. 2010;27:634–647.

    Article  PubMed  Google Scholar 

  53. Guida B, Germano R, Trio R, et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis. 2014;24:1043–1049.

    Article  CAS  PubMed  Google Scholar 

  54. Miranda Alatriste PV, Urbina Arronte R, Gomez Espinosa CO, Espinosa Cuevas MDLA. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp. 2014;29:582–590.

    PubMed  Google Scholar 

  55. Pavan M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease. Minerva Urol Nefrol. 2016;68:222–226.

    PubMed  Google Scholar 

  56. Cigarran Guldris S, Gonzalez Parra E, Cases Amenos A. Gut microbiota in chronic kidney disease. Nefrologia. 2017;37:9–19.

    Article  PubMed  Google Scholar 

  57. Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010–1016.

    Article  CAS  PubMed  Google Scholar 

  58. Prakash S, Chang TM. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med. 1996;2:883–887.

    Article  CAS  PubMed  Google Scholar 

  59. Andrade-Oliveira V, Amano MT, Correa-Costa M, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol. 2015;26:1877–1888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ranganathan N, Patel BG, Ranganathan P, et al. In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. Asaio j. 2006;52:70–79.

    Article  PubMed  Google Scholar 

  61. Ranganathan N, Patel B, Ranganathan P, et al. Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats. Scientific World Journal. 2005;5:652–660.

    Article  PubMed  PubMed Central  Google Scholar 

  62. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4:e296.

    Article  Google Scholar 

  63. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  64. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.

    Article  CAS  PubMed  Google Scholar 

  65. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. Lancet. 1991;337:867–872.

    Article  CAS  PubMed  Google Scholar 

  67. Cruz-Mora J, Martinez-Hernandez NE, Martin del Campo-Lopez F, et al. Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. J Ren Nutr. 2014;24:330–335.

    Article  PubMed  Google Scholar 

  68. Simenhoff ML, Dunn SR, Zollner GP, et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab. 1996;22:92–96.

    CAS  PubMed  Google Scholar 

  69. Nakabayashi I, Nakamura M, Kawakami K, et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant. 2011;26:1094–1098.

    Article  CAS  PubMed  Google Scholar 

  70. Natarajan R, Pechenya B. Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. BioMed Res Int. 2014;2014:568571.

    PubMed  PubMed Central  Google Scholar 

  71. Viramontes-Horner D, Marquez-Sandoval F, Martin-del-Campo F, et al. Effect of a symbiotic gel (Lactobacillus acidophilus + Bifidobacterium lactis + inulin) on presence and severity of gastrointestinal symptoms in hemodialysis patients. J Ren Nutr. 2015;25:284–291.

    Article  PubMed  Google Scholar 

  72. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Hoboken: Wiley; 2011.

    Google Scholar 

  73. Aronov PA, Luo FJ, Plummer NS, et al. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011;22:1769–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lieske JC, Goldfarb DS, De Simone C, Regnier C. Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int. 2005;68:1244–1249.

    Article  CAS  PubMed  Google Scholar 

  75. Pahl MV, Vaziri ND. The chronic kidney disease—colonic axis. Semin Dial. 2015;28:459–463.

    Article  PubMed  Google Scholar 

  76. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39:230–237.

    Article  CAS  PubMed  Google Scholar 

  77. Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–455.

    Article  CAS  PubMed  Google Scholar 

  78. Ichii O, Otsuka-Kanazawa S, Nakamura T, et al. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand. PLoS One. 2014;9:e108448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83:582–592.

    Article  CAS  PubMed  Google Scholar 

  80. Thongprayoon C, Hatch S, Kaewput W, et al. The effects of probiotics on renal function and uremic toxins in patients with chronic kidney disease; a meta-analysis of randomized controlled trials. J Nephropathol. 2018;7:106–114.

    Article  Google Scholar 

  81. Vanholder R, Gryp T, Glorieux G. Urea and chronic kidney disease: the comeback of the century? (in uraemia research). Nephrol Dial Transplant. 2018;33:4–12.

    Article  CAS  PubMed  Google Scholar 

  82. Mafra D, Fouque D. Gut microbiota and inflammation in chronic kidney disease patients. Clin Kidney J. 2015;8:332–334.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mafra D, Lobo JC, Barros AF, Koppe L, Vaziri ND, Fouque D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014;9:399–410.

    Article  CAS  PubMed  Google Scholar 

  84. Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R. Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin. 2009;25:1919–1930.

    Article  CAS  PubMed  Google Scholar 

  85. Wu Y, Potempa LA, El Kebir D, Filep JG. C-reactive protein and inflammation: conformational changes affect function. Biol Chem. 2015;396:1181–1197.

    Article  CAS  PubMed  Google Scholar 

  86. Cano AE, Neil AK, Kang JY, et al. Gastrointestinal symptoms in patients with end-stage renal disease undergoing treatment by hemodialysis or peritoneal dialysis. Am J Gastroenterol. 2007;102:1990–1997.

    Article  PubMed  Google Scholar 

  87. Strid H, Simren M, Johansson AC, Svedlund J, Samuelsson O, Bjornsson ES. The prevalence of gastrointestinal symptoms in patients with chronic renal failure is increased and associated with impaired psychological general well-being. Nephrol Dial Transplant. 2002;17:1434–1439.

    Article  PubMed  Google Scholar 

  88. Bossola M, Luciani G, Rosa F, Tazza L. Appetite and gastrointestinal symptoms in chronic hemodialysis patients. J Ren Nutr. 2011;21:448–454.

    Article  PubMed  Google Scholar 

  89. Hungin AP, Mulligan C, Pot B, et al. Systematic review: probiotics in the management of lower gastrointestinal symptoms in clinical practice—an evidence-based international guide. Aliment Pharmacol Ther. 2013;38:864–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Corbitt M, Campagnolo N, Staines D, Marshall-Gradisnik S. A systematic review of probiotic interventions for gastrointestinal symptoms and irritable bowel syndrome in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Probiotics Antimicrob Proteins. 2018. https://doi.org/10.1007/s12602-018-9397-8.

    Article  Google Scholar 

  91. Hungin APS, Mitchell CR, Whorwell P, et al. Systematic review: probiotics in the management of lower gastrointestinal symptoms—an updated evidence-based international consensus. Aliment Pharmacol Ther. 2018;47:1054–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Natarajan R, Pechenyak B, Vyas U, et al. Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int. 2014;2014:568571.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors had access to the data and a role in writing the manuscript.

Corresponding author

Correspondence to Wisit Cheungpasitporn.

Ethics declarations

Conflict of interest

We do not have any financial or non-financial potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongprayoon, C., Kaewput, W., Hatch, S.T. et al. Effects of Probiotics on Inflammation and Uremic Toxins Among Patients on Dialysis: A Systematic Review and Meta-Analysis. Dig Dis Sci 64, 469–479 (2019). https://doi.org/10.1007/s10620-018-5243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5243-9

Keywords

Navigation