Skip to main content

Advertisement

Log in

Therapeutic implications of shared mechanisms in non-alcoholic fatty liver disease and chronic kidney disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

The most common cause of liver disease worldwide is now non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of disease ranging from steatosis to non-alcoholic steatohepatitis, causing cirrhosis, and ultimately hepatocellular carcinoma. However, the impact of NAFLD is not limited to the liver. NAFLD has extra-hepatic consequences, most notably, cardiovascular and renal disease. NAFLD and chronic kidney disease share pathogenic mechanisms including insulin resistance, lipotoxicity, inflammation and oxidative stress. Not surprisingly, there has been a recent surge in efforts to manage NAFLD in an integrated way that not only protects the liver but also delays comorbidities such as chronic kidney disease. This concept of simultaneously addressing the main disease target and comorbidities is key to improve outcomes, as recently demonstrated by clinical trials of SGLT2 inhibitors and GLP1 receptor agonists in diabetes. HIF activators, already marketed in China, also have the potential to protect both liver and kidney, as suggested by preclinical data. This review concisely discusses efforts at identifying common pathogenic pathways between NAFLD and chronic kidney disease with an emphasis on potential paradigm shifts in diagnostic workup and therapeutic management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mikolasevic I, Orlic L, Stimac D, Mavrinac V, Ferencic A, Rundic A, Babic V, Milic S (2016) Nonalcoholic fatty liver disease a multisystem disease? Lijec Vjesn 138:353–358

    PubMed  Google Scholar 

  2. El Hadi H, Di Vincenzo A, Vettor R, Rossato M (2019) Cardio-metabolic disorders in non-alcoholic fatty liver disease. Int J Mol Sci 20:2215

    PubMed Central  Google Scholar 

  3. Adams LA, Anstee QM, Tilg H, Targher G (2017) Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66:1138–1153

    PubMed  Google Scholar 

  4. Ix JH, Sharma K (2010) Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK. J Am Soc Nephrol 21:406–412

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanyal AJ (2019) Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 16:377–386

    PubMed  Google Scholar 

  6. Han E, Lee YH (2017) Non-alcoholic fatty liver disease: the emerging burden in cardiometabolic and renal diseases. Diabetes Metab J 41:430–437

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jang HR, Kang D, Sinn DH, Gu S, Cho SJ, Lee JE, Huh W, Paik SW, Ryu S, Chang Y, Shafi T, Lazo M, Guallar E, Cho J, Gwak GY (2018) Nonalcoholic fatty liver disease accelerates kidney function decline in patients with chronic kidney disease: a cohort study. Sci Rep 8:4718

    PubMed  PubMed Central  Google Scholar 

  8. Musso G, Gambino R, Tabibian JH, Ekstedt M, Kechagias S, Hamaguchi M, Hultcrantz R, Hagstrom H, Yoon SK, Charatcharoenwitthaya P, George J, Barrera F, Hafliethadottir S, Bjornsson ES, Armstrong MJ, Hopkins LJ, Gao X, Francque S, Verrijken A, Yilmaz Y, Lindor KD, Charlton M, Haring R, Lerch MM, Rettig R, Volzke H, Ryu S, Li G, Wong LL, Machado M, Cortez-Pinto H, Yasui K, Cassader M (2014) Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med 11:e1001680

    PubMed  PubMed Central  Google Scholar 

  9. Targher G, Chonchol M, Bertolini L, Rodella S, Zenari L, Lippi G, Franchini M, Zoppini G, Muggeo M (2008) Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease. J Am Soc Nephrol 19:1564–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeina AR, Goldenberg L, Nachtigal A, Hasadia R, Saliba W (2017) Association between nephrolithiasis and fatty liver detected on non-enhanced CT for clinically suspected renal colic. Clin Imaging 43:148–152

    PubMed  Google Scholar 

  11. Ahn AL, Choi JK, Kim MN, Kim SA, Oh EJ, Kweon HJ, Cho DY (2013) Non-alcoholic fatty liver disease and chronic kidney disease in koreans aged 50 years or older. Korean J Fam Med 34:199–205

    PubMed  PubMed Central  Google Scholar 

  12. El Azeem HA, el Khalek SA, El-Akabawy H, Naeim H, Khalik HA, Alfifi AA (2013) Association between nonalcoholic fatty liver disease and the incidence of cardiovascular and renal events. J Saudi Heart Assoc 25:239–246

    PubMed  PubMed Central  Google Scholar 

  13. Di Costanzo A, Pacifico L, D'Erasmo L, Polito L, Martino MD, Perla FM, Iezzi L, Chiesa C, Arca M (2019) Nonalcoholic Fatty Liver Disease (NAFLD), but not ıts susceptibility gene variants, ınfluences the decrease of kidney function in overweight/obese children. Int J Mol Sci 20:444

    Google Scholar 

  14. Li L, Liu DW, Yan HY, Wang ZY, Zhao SH, Wang B (2016) Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev 17:510–519

    CAS  PubMed  Google Scholar 

  15. Lu FB, Hu ED, Xu LM, Chen L, Wu JL, Li H, Chen DZ, Chen YP (2018) The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 12:491–502

    CAS  PubMed  Google Scholar 

  16. Anastasio P, Viggiano D, Zacchia M, Altobelli C, Capasso G, Gaspare N (2017) Delay in renal hemodynamic response to a meat meal in severe obesity. Nephron 136:151–157

    CAS  PubMed  Google Scholar 

  17. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D (2004) Predictors of new-onset kidney disease in a community-based population. JAMA 291:844–850

    CAS  PubMed  Google Scholar 

  18. Kramer H, Luke A, Bidani A, Cao G, Cooper R, McGee D (2005) Obesity and prevalent and incident CKD: the hypertension detection and follow-up program. Am J Kidney Dis 46:587–594

    PubMed  Google Scholar 

  19. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS (2006) Body mass index and risk for end-stage renal disease. Ann Intern Med 144:21–28

    PubMed  Google Scholar 

  20. Pacifico L, Bonci E, Andreoli GM, Di Martino M, Gallozzi A, De Luca E, Chiesa C (2016) The ımpact of nonalcoholic fatty liver disease on renal function in children with overweight/obesity. Int J Mol Sci 17:1218

    PubMed Central  Google Scholar 

  21. Voith K, Bruderlein FT, Humber LG (1978) Neuroleptics related to butaclamol. Synthesis and some psychopharmacological effects of a series of 3-aryl analogues. J Med Chem 21:694–698

    CAS  PubMed  Google Scholar 

  22. Spoto B, Pisano A, Zoccali C (2016) Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol 311:F1087–f1108

    CAS  PubMed  Google Scholar 

  23. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24:908–922

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marcuccilli M, Chonchol M (2016) NAFLD and chronic kidney disease. Int J Mol Sci 17:562

    PubMed  PubMed Central  Google Scholar 

  25. Musso G, Cassader M, Cohney S, Pinach S, Saba F, Gambino R (2015) Emerging liver-kidney interactions in nonalcoholic fatty liver disease. Trends Mol Med 21:645–662

    CAS  PubMed  Google Scholar 

  26. Targher G, Byrne CD (2017) Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nature Rev Nephrol 13:297–310

    CAS  Google Scholar 

  27. Sanchez-Lozada LG, Andres-Hernando A, Garcia-Arroyo FE, Cicerchi C, Li N, Kuwabara M, Roncal-Jimenez CA, Johnson RJ, Lanaspa MA (2019) Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. J Biol Chem 294:4272–4281

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Takir M, Kostek O, Ozkok A, Elcioglu OC, Bakan A, Erek A, Mutlu HH, Telci O, Semerci A, Odabas AR, Afsar B, Smits G, Sharma S, Johnson RJ, Kanbay M (2015) Lowering uric acid with allopurinol ımproves ınsulin resistance and systemic ınflammation in asymptomatic hyperuricemia. J Investig Med 63:924–929

    CAS  PubMed  Google Scholar 

  29. Kuwabara M, Borghi C, Cicero AFG, Hisatome I, Niwa K, Ohno M, Johnson RJ, Lanaspa MA (2018) Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan. Int J Cardiol 261:183–188

    PubMed  Google Scholar 

  30. Jensen T, Niwa K, Hisatome I, Kanbay M, Andres-Hernando A, Roncal-Jimenez CA, Sato Y, Garcia G, Ohno M, Lanaspa MA, Johnson RJ, Kuwabara M (2018) Increased serum uric acid over five years is a risk factor for developing fatty liver. Sci Rep 8:11735

    PubMed  PubMed Central  Google Scholar 

  31. Kanbay M, Jensen T, Solak Y, Le M, Roncal-Jimenez C, Rivard C, Lanaspa MA, Nakagawa T, Johnson RJ (2016) Uric acid in metabolic syndrome: From an innocent bystander to a central player. Eur J Intern Med 29:3–8

    CAS  Google Scholar 

  32. Sato Y, Feig DI, Stack AG, Kang DH, Lanaspa MA, Ejaz AA, Sanchez-Lozada LG, Kuwabara M, Borghi C, Johnson RJ (2019) The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nature Rev Nephrol 15:767–775

    CAS  Google Scholar 

  33. Kanbay M, Afsar B, Covic A (2011) Uric acid as a cardiometabolic risk factor: to be or not to be. Contrib Nephrol 171:62–67

    CAS  PubMed  Google Scholar 

  34. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285

    CAS  PubMed  Google Scholar 

  35. Agarwal S, Chattopadhyay M, Mukherjee S, Dasgupta S, Mukhopadhyay S, Bhattacharya S (2017) Fetuin-A downregulates adiponectin through Wnt-PPARgamma pathway in lipid induced inflamed adipocyte. Biochim Biophys Acta Mol Basis Dis 1863:174–181

    CAS  PubMed  Google Scholar 

  36. Chowdhry S, Nazmy MH, Meakin PJ, Dinkova-Kostova AT, Walsh SV, Tsujita T, Dillon JF, Ashford ML, Hayes JD (2010) Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic Biol Med 48:357–371

    CAS  PubMed  Google Scholar 

  37. Camer D, Yu Y, Szabo A, Dinh CH, Wang H, Cheng L, Huang XF (2015) Bardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet. Mol Cell Endocrinol 412:36–43

    CAS  PubMed  Google Scholar 

  38. Kuro OM (2019) The Klotho proteins in health and disease. Nat Rev Nephrol 15:27–44

    Google Scholar 

  39. Fernandez-Fernandez B, Izquierdo MC, Valino-Rivas L, Nastou D, Sanz AB, Ortiz A, Sanchez-Nino MD (2018) Albumin downregulates Klotho in tubular cells. Nephrol Dial Transplant 33:1712–1722

    CAS  PubMed  Google Scholar 

  40. Navarro-Gonzalez JF, Sanchez-Nino MD, Donate-Correa J, Martin-Nunez E, Ferri C, Perez-Delgado N, Gorriz JL, Martinez-Castelao A, Ortiz A, Mora-Fernandez C (2018) Effects of pentoxifylline on soluble klotho concentrations and renal tubular cell expression in diabetic kidney disease. Diabetes Care 41:1817–1820

    CAS  PubMed  Google Scholar 

  41. Kanbay M, Vervloet M, Cozzolino M, Siriopol D, Covic A, Goldsmith D, Solak Y (2017) Novel Faces of Fibroblast Growth Factor 23 (FGF23): iron deficiency, inflammation, insulin resistance, left ventricular hypertrophy, proteinuria and acute kidney injury. Calcif Tissue Int 100:217–228

    CAS  PubMed  Google Scholar 

  42. Rao Z, Landry T, Li P, Bunner W, Laing BT, Yuan Y, Huang H (2019) Administration of alpha klotho reduces liver and adipose lipid accumulation in obese mice. Heliyon 5:e01494

    PubMed  PubMed Central  Google Scholar 

  43. Dongiovanni P, Crudele A, Panera N, Romito I, Meroni M, De Stefanis C, Palma A, Comparcola D, Fracanzani AL, Miele L, Valenti L, Nobili V, Alisi A (2019) beta-Klotho gene variation is associated with liver damage in children with NAFLD. J Hepatol 72:411–419

    PubMed  Google Scholar 

  44. Capalbo O, Giuliani S, Ferrero-Fernandez A, Casciato P, Musso CG (2019) Kidney-liver pathophysiological crosstalk: its characteristics and importance. Int Urol Nephrol 51:2203–2207

    PubMed  Google Scholar 

  45. Hirata T, Tomita K, Kawai T, Yokoyama H, Shimada A, Kikuchi M, Hirose H, Ebinuma H, Irie J, Ojiro K, Oikawa Y, Saito H, Itoh H, Hibi T (2013) Effect of telmisartan or losartan for treatment of nonalcoholic fatty liver disease: fatty liver protection trial by Telmisartan or Losartan Study (FANTASY). Int J Endocrinol 2013:587140

    PubMed  PubMed Central  Google Scholar 

  46. Musso G, Cassader M, Cohney S, De Michieli F, Pinach S, Saba F, Gambino R (2016) Fatty liver and chronic kidney disease: novel mechanistic insights and therapeutic opportunities. Diabetes Care 39:1830–1845

    CAS  PubMed  Google Scholar 

  47. Rahtu-Korpela L, Karsikas S, Horkko S, Blanco Sequeiros R, Lammentausta E, Makela KA, Herzig KH, Walkinshaw G, Kivirikko KI, Myllyharju J, Serpi R, Koivunen P (2014) HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 63:3324–3333

    CAS  PubMed  Google Scholar 

  48. Armstrong MJ, Houlihan DD, Rowe IA, Clausen WH, Elbrond B, Gough SC, Tomlinson JW, Newsome PN (2013) Safety and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program. Aliment Pharmacol Ther 37:234–242

    CAS  PubMed  Google Scholar 

  49. Sarafidis P, Ferro CJ, Morales E, Ortiz A, Malyszko J, Hojs R, Khazim K, Ekart R, Valdivielso J, Fouque D, London GM, Massy Z, Ruggenenti P, Porrini E, Wiecek A, Zoccali C, Mallamaci F, Hornum M (2019) SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol Dial Transplant 34:208–230

    CAS  PubMed  Google Scholar 

  50. Fernandez-Fernandez B, Fernandez-Prado R, Gorriz JL, Martinez-Castelao A, Navarro-Gonzalez JF, Porrini E, Soler MJ, Ortiz A (2019) Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation and Study of Diabetic Nephropathy with Atrasentan: what was learned about the treatment of diabetic kidney disease with canagliflozin and atrasentan? Clin Kidney J 12:313–321

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchez-Nino MD, Bozic M, Cordoba-Lanus E, Valcheva P, Gracia O, Ibarz M, Fernandez E, Navarro-Gonzalez JF, Ortiz A, Valdivielso JM (2012) Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Renal Physiol 302:F647–657

    CAS  PubMed  Google Scholar 

  52. Chen N, Hao C, Peng X, Lin H, Yin A, Hao L, Tao Y, Liang X, Liu Z, Xing C, Chen J, Luo L, Zuo L, Liao Y, Liu BC, Leong R, Wang C, Liu C, Neff T, Szczech L, Yu KP (2019) Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med 381:1001–1010

    CAS  PubMed  Google Scholar 

  53. Provenzano R, Besarab A, Sun CH, Diamond SA, Durham JH, Cangiano JL, Aiello JR, Novak JE, Lee T, Leong R, Roberts BK, Saikali KG, Hemmerich S, Szczech LA, Yu KH, Neff TB (2016) Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin J Am Soc Nephrol 11(6):982–991. https://doi.org/10.2215/CJN.06890615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saito H, Tanaka T, Sugahara M, Tanaka S, Fukui K, Wakashima T, Nangaku M (2019) Inhibition of prolyl hydroxylase domain (PHD) by JTZ-951 reduces obesity-related diseases in the liver, white adipose tissue, and kidney in mice with a high-fat diet. Lab Invest 99:1217–1232

    CAS  PubMed  Google Scholar 

  55. Adinolfi LE, Ingrosso D, Cesaro G, Cimmino A, D'Antò M, Capasso R, Zappia V, Ruggiero G (2005) Hyperhomocysteinemia and the MTHFR C677T polymorphism promote steatosis and fibrosis in chronic hepatitis C patients. Hepatology 41:995–1003

    CAS  PubMed  Google Scholar 

  56. Zampino R, Ingrosso D, Durante-Mangoni E, Capasso R, Tripodi MF, Restivo L, Zappia V, Ruggiero G, Adinolfi LE (2008) Microsomal triglyceride transfer protein (MTP) -493G/T gene polymorphism contributes to fat liver accumulation in HCV genotype 3 infected patients. J Viral Hepat 15:740–746

    CAS  PubMed  Google Scholar 

  57. Zampino R, Macera M, Cirillo G, Pafundi PC, Rinaldi L, Coppola N, Pisaturo M, Adinolfi LE, Miraglia Del Giudice E, Ingrosso D, Capasso R (2018) No effect of MTP polymorphisms on PNPLA3 in HCV-correlated steatosis. Infez Med 26:244–248

    PubMed  Google Scholar 

  58. Byrne CD, Targher G (2020) NAFLD as a driver of chronic kidney disease. J Hepatol 72:785–801

    PubMed  Google Scholar 

  59. Sinn DH, Kang D, Jang HR, Gu S, Cho SJ, Paik SW, Ryu S, Chang Y, Lazo M, Guallar E, Cho J, Gwak GY (2017) Development of chronic kidney disease in patients with non-alcoholic fatty liver disease: a cohort study. J Hepatol 67:1274–1280

    PubMed  Google Scholar 

  60. Yeung MW, Wong GL, Choi KC, Luk AO, Kwok R, Shu SS, Chan AW, Lau ESH, Ma RCW, Chan HL, Chan JC, Wong VW, Kong AP (2017) Advanced liver fibrosis but not steatosis is independently associated with albuminuria in Chinese patients with type 2 diabetes. J Hepatol. https://doi.org/10.1016/j.jhep.2017.09.020

    Article  PubMed  Google Scholar 

  61. Yasui K, Sumida Y, Mori Y, Mitsuyoshi H, Minami M, Itoh Y, Kanemasa K, Matsubara H, Okanoue T, Yoshikawa T (2011) Nonalcoholic steatohepatitis and increased risk of chronic kidney disease. Metabolism 60:735–739

    CAS  PubMed  Google Scholar 

  62. Targher G, Pichiri I, Zoppini G, Trombetta M, Bonora E (2012) Increased prevalence of chronic kidney disease in patients with Type 1 diabetes and non-alcoholic fatty liver. Diabetic Med 29:220–226

    CAS  PubMed  Google Scholar 

  63. Arase Y, Suzuki F, Kobayashi M, Suzuki Y, Kawamura Y, Matsumoto N, Akuta N, Kobayashi M, Sezaki H, Saito S, Hosaka T, Ikeda K, Kumada H, Ohmoto Y, Amakawa K, Tsuji H, Hsieh SD, Kato K, Tanabe M, Ogawa K, Hara S, Kobayashi T (2011) The development of chronic kidney disease in Japanese patients with non-alcoholic fatty liver disease. Internal Med (Tokyo, Japan) 50:1081–1087

    CAS  Google Scholar 

  64. Hwang ST, Cho YK, Yun JW, Park JH, Kim HJ, Park DI, Sohn CI, Jeon WK, Kim BI, Rhee EJ, Oh KW, Lee WY, Jin W (2010) Impact of non-alcoholic fatty liver disease on microalbuminuria in patients with prediabetes and diabetes. Internal Med J 40:437–442

    CAS  Google Scholar 

  65. Chang Y, Ryu S, Sung E, Woo HY, Oh E, Cha K, Jung E, Kim WS (2008) Nonalcoholic fatty liver disease predicts chronic kidney disease in nonhypertensive and nondiabetic Korean men. Metabolism 57:569–576

    CAS  PubMed  Google Scholar 

  66. Mikolasevic I, Racki S, Bubic I, Jelic I, Stimac D, Orlic L (2013) Chronic kidney disease and nonalcoholic Fatty liver disease proven by transient elastography. Kidney Blood Pressure Res 37:305–310

    CAS  Google Scholar 

  67. Targher G, Mantovani A, Pichiri I, Mingolla L, Cavalieri V, Mantovani W, Pancheri S, Trombetta M, Zoppini G, Chonchol M, Byrne CD, Bonora E (2014) Nonalcoholic fatty liver disease is independently associated with an increased incidence of chronic kidney disease in patients with type 1 diabetes. Diabetes Care 37:1729–1736

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MK gratefully acknowledge use of the services and facilities of the Koç University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.”AO research is supported by FIS PI19/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD016/0009 FEDER funds, Fundacion Renal Iñigo Álvarez de Toledo (FRIAT).

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to: (1) substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, and, (3) final approval of the version to be published.

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanbay, M., Bulbul, M.C., Copur, S. et al. Therapeutic implications of shared mechanisms in non-alcoholic fatty liver disease and chronic kidney disease. J Nephrol 34, 649–659 (2021). https://doi.org/10.1007/s40620-020-00751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00751-y

Keywords

Navigation