Skip to main content

Advertisement

Log in

Vitamin K effects in human health: new insights beyond bone and cardiovascular health

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

A Correction to this article was published on 03 January 2020

This article has been updated

Abstract

Vitamin K is a cofactor for the function of the enzyme γ-glutamyl carboxylase, necessary for the activation of multiple vitamin K dependent-proteins. Vitamin K dependent-proteins (VKDPs) have important roles in bone health, vascular health, metabolism, reproduction as well as in cancer progression. Vitamin K deficiency is common in different conditions, including kidney disease, and it may influence the activity of VKDPs. This review discusses vitamin K status in human health and the physiologic and pathologic roles of VKDPs, beyond the established effects in skeletal and cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 03 January 2020

    The original article has been corrected.

References

  1. Shearer MJ (1995) Vitamin K. Lancet 345(8944):229–234

    CAS  PubMed  Google Scholar 

  2. Azuma K et al (2015) Osteoblast-specific gamma-glutamyl carboxylase-deficient mice display enhanced bone formation with aberrant mineralization. J Bone Miner Res 30(7):1245–1254

    CAS  PubMed  Google Scholar 

  3. Fusaro M et al (2011) Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: an important but poorly studied relationship. J Endocrinol Invest 34(4):317–323

    CAS  PubMed  Google Scholar 

  4. Silaghi CN et al (2019) Vitamin K dependent proteins in kidney disease. Int J Mol Sci 20(7)

  5. Fusaro M et al (2017) Vitamin K and bone. Clin Cases Miner Bone Metab 14(2):200–206

    PubMed  PubMed Central  Google Scholar 

  6. Morris DP et al (1995) Processive post-translational modification. Vitamin K-dependent carboxylation of a peptide substrate. J Biol Chem 270(51):30491–30498

    CAS  PubMed  Google Scholar 

  7. Van de Loo PG et al (1987) The effect of Gla-containing proteins on the precipitation of insoluble salts. Biochem Biophys Res Commun 142(1):113–119

    PubMed  Google Scholar 

  8. Boskey AL et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23(3):187–196

    CAS  PubMed  Google Scholar 

  9. Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7(8):877–885

    CAS  PubMed  Google Scholar 

  10. Wei J et al (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124(4):1–13

    PubMed  Google Scholar 

  11. Lee NK et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei J et al (2014) Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63(3):1021–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Oury F et al (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123(6):2421–2433

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo XH et al (2009) Development of arterial calcification in adiponectin-deficient mice: adiponectin regulates arterial calcification. J Bone Miner Res 24(8):1461–1468

    CAS  PubMed  Google Scholar 

  15. Dou J et al (2014) Osteocalcin attenuates high fat diet-induced impairment of endothelium-dependent relaxation through Akt/eNOS-dependent pathway. Cardiovasc Diabetol 13:74

    PubMed  PubMed Central  Google Scholar 

  16. Huang L et al (2017) Osteocalcin improves metabolic profiles, body composition and arterial stiffening in an induced diabetic rat model. Exp Clin Endocrinol Diabetes 125(4):234–240

    CAS  PubMed  Google Scholar 

  17. Bacchetta J et al (2009) The relationship between adipokines, osteocalcin and bone quality in chronic kidney disease. Nephrol Dial Transplant 24(10):3120–3125

    CAS  PubMed  Google Scholar 

  18. Levy RJ, Gundberg C, Scheinman R (1983) The identification of the vitamin K-dependent bone protein osteocalcin as one of the gamma-carboxyglutamic acid containing proteins present in calcified atherosclerotic plaque and mineralized heart valves. Atherosclerosis 46(1):49–56

    CAS  PubMed  Google Scholar 

  19. Fleet JC, Hock JM (1994) Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction. J Bone Miner Res 9(10):1565–1573

    CAS  PubMed  Google Scholar 

  20. Fusaro M et al (2016) Calcimimetic and vitamin D analog use in hemodialyzed patients is associated with increased levels of vitamin K dependent proteins. Endocrine 51(2):333–341

    CAS  PubMed  Google Scholar 

  21. Parker BD et al (2010) Association of osteocalcin and abdominal aortic calcification in older women: the study of osteoporotic fractures. Calcif Tissue Int 86(3):185–191

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Millar SA et al (2017) Osteocalcin, vascular calcification, and atherosclerosis: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 8:183

    Google Scholar 

  23. Gundberg CM et al (1985) Osteocalcin in human serum: a circadian rhythm. J Clin Endocrinol Metab 60(4):736–739

    CAS  PubMed  Google Scholar 

  24. Delmas PD et al (1983) Effect of renal function on plasma levels of bone Gla-protein. J Clin Endocrinol Metab 57(5):1028–1030

    CAS  PubMed  Google Scholar 

  25. Li J et al (2016) An overview of osteocalcin progress. J Bone Miner Metab 34(4):367–379

    CAS  PubMed  Google Scholar 

  26. Gallieni M, Fusaro M (2014) Vitamin K and cardiovascular calcification in CKD: is patient supplementation on the horizon? Kidney Int 86(2):232–234

    CAS  PubMed  Google Scholar 

  27. Schurgers LJ, Cranenburg EC, Vermeer C (2008) Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 100(4):593–603

    CAS  PubMed  Google Scholar 

  28. Luo G et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386(6620):78–81

    CAS  PubMed  Google Scholar 

  29. Speer MY et al (2009) Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 104(6):733–741

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cranenburg EC et al (2010) Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb Haemost 104(4):811–822

    CAS  PubMed  Google Scholar 

  31. Thamratnopkoon S et al (2017) Correlations of plasma desphosphorylated uncarboxylated matrix Gla protein with vascular calcification and vascular stiffness in chronic kidney disease. Nephron 135(3):167–172

    CAS  PubMed  Google Scholar 

  32. Munroe PB et al (1999) Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet 21(1):142–144

    CAS  PubMed  Google Scholar 

  33. Kaipatur NR, Murshed M, McKee MD (2008) Matrix Gla protein inhibition of tooth mineralization. J Dent Res 87(9):839–844

    CAS  PubMed  Google Scholar 

  34. Julien M et al (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24(11):1856–1868

    CAS  PubMed  Google Scholar 

  35. Zhang Y et al (2019) Unexpected role of matrix Gla protein in osteoclasts: inhibiting osteoclast differentiation and bone resorption. Mol Cell Biol 39(12)

  36. Misra D et al (2011) Matrix Gla protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis. J Rheumatol 38(9):1960–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tunon-Le Poultel D et al (2014) Association of matrix Gla protein gene functional polymorphisms with loss of bone mineral density and progression of aortic calcification. Osteoporos Int 25(4):1237–1246

    CAS  PubMed  Google Scholar 

  38. Evenepoel P et al (2019) Poor vitamin K status is associated with low bone mineral density and increased fracture risk in end-stage renal disease. J Bone Miner Res 34(2):262–269

    CAS  PubMed  Google Scholar 

  39. Parker BD et al (2009) Association of kidney function and uncarboxylated matrix Gla protein: data from the Heart and Soul Study. Nephrol Dial Transplant 24(7):2095–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rennenberg RJ et al (2008) Renal handling of matrix Gla-protein in humans with moderate to severe hypertension. Hypertens Res 31(9):1745–1751

    CAS  PubMed  Google Scholar 

  41. Azuma K, Ouchi Y, Inoue S (2014) Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int 14(1):1–7

    PubMed  Google Scholar 

  42. Albermann N et al (2005) Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 70(6):949–958

    CAS  PubMed  Google Scholar 

  43. Tabb MM et al (2003) Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278(45):43919–43927

    CAS  PubMed  Google Scholar 

  44. Cockayne S et al (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166(12):1256–1261

    CAS  PubMed  Google Scholar 

  45. Klatt AR et al (2011) The matrilins: modulators of extracellular matrix assembly. Int J Biochem Cell Biol 43(3):320–330

    CAS  PubMed  Google Scholar 

  46. Ichikawa T et al (2006) Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem 281(25):16927–16934

    CAS  PubMed  Google Scholar 

  47. Azuma K et al (2010) Pregnane X receptor knockout mice display osteopenia with reduced bone formation and enhanced bone resorption. J Endocrinol 207(3):257–263

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou C et al (2006) Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest 116(6):1703–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Theuwissen E et al (2014) Vitamin K status in healthy volunteers. Food Funct 5(2):229–234

    CAS  PubMed  Google Scholar 

  50. Fusaro M et al (2017) Low vitamin K1 intake in haemodialysis patients. Clin Nutr 36(2):601–607

    CAS  PubMed  Google Scholar 

  51. Vervloet MG (2017) Brandenburg VM2; CKD-MBD working group of ERA-EDTA. Circulating markers of bone turnover. J Nephrol 30(5):663–670. https://doi.org/10.1007/s40620-017-0408-8(epub 2017 May 13)

    Article  PubMed  PubMed Central  Google Scholar 

  52. Holden RM et al (2008) Vitamin K status of Canadian peritoneal dialysis patients. Perit Dial Int 28(4):415–418

    CAS  PubMed  Google Scholar 

  53. Wyskida K et al (2015) Daily intake and serum concentration of menaquinone-4 (MK-4) in haemodialysis patients with chronic kidney disease. Clin Biochem 48(18):1246–1251

    CAS  PubMed  Google Scholar 

  54. Cranenburg EC et al (2012) Vitamin K intake and status are low in hemodialysis patients. Kidney Int 82(5):605–610

    CAS  PubMed  Google Scholar 

  55. Jansz TT et al (2018) The role of kidney transplantation and phosphate binder use in vitamin K status. PLoS One 13(8):e0203157

    PubMed  PubMed Central  Google Scholar 

  56. Uhlin F et al (2019) Long-term follow-up of biomarkers of vascular calcification after switch from traditional hemodialysis to online hemodiafiltration. Scand J Clin Lab Invest 79(3):174–181

    CAS  PubMed  Google Scholar 

  57. Fusaro M et al (2012) Vitamin K, vertebral fractures, vascular calcifications, and mortality: vitamin K Italian (VIKI) dialysis study. J Bone Miner Res 27(11):2271–2278

    CAS  PubMed  Google Scholar 

  58. Geleijnse JM et al (2004) Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 134(11):3100–3105

    CAS  PubMed  Google Scholar 

  59. Kuwabara A et al (2009) High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporos Int 20(6):935–942

    CAS  PubMed  Google Scholar 

  60. Riphagen IJ et al (2016) Measurement of plasma vitamin K1 (phylloquinone) and K2 (menaquinones-4 and -7) using HPLC-tandem mass spectrometry. Clin Chem Lab Med 54(7):1201–1210

    CAS  PubMed  Google Scholar 

  61. Westenfeld R et al (2012) Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis 59(2):186–195

    CAS  PubMed  Google Scholar 

  62. Caluwe R et al (2014) Vitamin K2 supplementation in haemodialysis patients: a randomized dose-finding study. Nephrol Dial Transplant 29(7):1385–1390

    CAS  PubMed  Google Scholar 

  63. Keyzer CA et al (2015) Vitamin K status and mortality after kidney transplantation: a cohort study. Am J Kidney Dis 65(3):474–483

    CAS  PubMed  Google Scholar 

  64. Block GA et al (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15(8):2208–2218

    CAS  PubMed  Google Scholar 

  65. Susantitaphong P, Jaber BL (2012) Potential interaction between sevelamer and fat-soluble vitamins: a hypothesis. Am J Kidney Dis 59(2):165–167

    PubMed  Google Scholar 

  66. Takagi K et al (2010) Metal ion and vitamin adsorption profiles of phosphate binder ion-exchange resins. Clin Nephrol 73(1):30–35

    CAS  PubMed  Google Scholar 

  67. Stitt TN et al (1995) The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80(4):661–670

    CAS  PubMed  Google Scholar 

  68. Manfioletti G et al (1993) The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol 13(8):4976–4985

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sasaki T et al (2006) Structural basis for Gas6-Axl signalling. EMBO J 25(1):80–87

    CAS  PubMed  Google Scholar 

  70. Hafizi S, Dahlbäck B (2006) Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J 273(23):5231–5244 (epub 2006 Oct 25)

    CAS  PubMed  Google Scholar 

  71. Chiu KC et al (2015) Polarization of tumor-associated macrophages and Gas6/Axl signaling in oral squamous cell carcinoma. Oral Oncol 51(7):683–689

    CAS  PubMed  Google Scholar 

  72. Wu G et al (2017) Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis 8(3):e2700

    PubMed  PubMed Central  Google Scholar 

  73. Sun W, Fujimoto J, Tamaya T (2004) Coexpression of Gas6/Axl in human ovarian cancers. Oncology 66(6):450–457

    CAS  PubMed  Google Scholar 

  74. Hutterer M et al (2008) Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res 14(1):130–138

    CAS  PubMed  Google Scholar 

  75. Han J et al (2013) Gas6/Axl mediates tumor cell apoptosis, migration and invasion and predicts the clinical outcome of osteosarcoma patients. Biochem Biophys Res Commun 435(3):493–500

    CAS  PubMed  Google Scholar 

  76. Zhang Z et al (2012) Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44(8):852–860

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gustafsson A, Boström AK, Ljungberg B, Axelson H, Dahlbäck B (2009) Gas6 and the receptor tyrosine kinase Axl in clear cell renal cell carcinoma. PLoS One 4(10):e7575. https://doi.org/10.1371/journal.pone.0007575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou L, Liu XD, Sun M, Zhang X, German P, Bai S, Ding Z, Tannir N, Wood CG, Matin SF, Karam JA, Tamboli P, Sircar K, Rao P, Rankin EB, Laird DA, Hoang AG, Walker CL, Giaccia AJ, Jonasch E (2016) Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 35(21):2687–2697. https://doi.org/10.1038/onc.2015.343(epub 2015 Sep 14)

    Article  CAS  PubMed  Google Scholar 

  79. Norris RA et al (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101(3):695–711

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Egbert M et al (2014) The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci 73(1):40–48

    CAS  PubMed  Google Scholar 

  81. Conway SJ, Molkentin JD (2008) Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genomics 9(8):548–555

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dixon IMC, Landry NM, Rattan SG (2019) Periostin reexpression in heart disease contributes to cardiac interstitial remodeling by supporting the cardiac myofibroblast phenotype. Adv Exp Med Biol 1132:35–41

    CAS  PubMed  Google Scholar 

  83. Oka T et al (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101(3):313–321

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shao R et al (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24(9):3992–4003

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Takanami I, Abiko T, Koizumi S (2008) Expression of periostin in patients with non-small cell lung cancer: correlation with angiogenesis and lymphangiogenesis. Int J Biol Mark 23(3):182–186

    CAS  Google Scholar 

  86. Cui D et al (2017) The multifaceted role of periostin in priming the tumor microenvironments for tumor progression. Cell Mol Life Sci 74(23):4287–4291

    CAS  PubMed  Google Scholar 

  87. Ratajczak-Wielgomas K et al (2016) Periostin expression in cancer-associated fibroblasts of invasive ductal breast carcinoma. Oncol Rep 36(5):2745–2754

    CAS  PubMed  Google Scholar 

  88. Ratajczak-Wielgomas K et al (2017) Expression of periostin in breast cancer cells. Int J Oncol 51(4):1300–1310

    CAS  PubMed  Google Scholar 

  89. Vardaki I et al (2016) Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 7(46):74966–74978

    PubMed  PubMed Central  Google Scholar 

  90. Li C et al (2018) Prognostic value of periostin in early-stage breast cancer treated with conserving surgery and radiotherapy. Oncol Lett 15(5):8072–8078

    PubMed  PubMed Central  Google Scholar 

  91. Viegas CS et al (2008) Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem 283(52):36655–36664

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Viegas CSB et al (2017) Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: implications for calcification-related chronic inflammatory diseases. PLoS One 12(5):e0177829

    PubMed  PubMed Central  Google Scholar 

  93. Cavaco S et al (2016) Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol Life Sci 73(5):1051–1065

    CAS  PubMed  Google Scholar 

  94. Viegas CS et al (2009) Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol 175(6):2288–2298

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Viegas CS et al (2015) Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol 35(2):399–408

    CAS  PubMed  Google Scholar 

  96. Kiely M et al (2015) Real-time cell analysis of the inhibitory effect of vitamin K2 on adhesion and proliferation of breast cancer cells. Nutr Res 35(8):736–743

    CAS  PubMed  Google Scholar 

  97. Refolo MG et al (2017) IGF-1R tyrosine kinase inhibitors and Vitamin K1 enhance the antitumor effects of Regorafenib in HCC cell lines. Oncotarget 8(61):103465–103476

    PubMed  PubMed Central  Google Scholar 

  98. Nimptsch K et al (2010) Dietary vitamin K intake in relation to cancer incidence and mortality: results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am J Clin Nutr 91(5):1348–1358

    CAS  PubMed  Google Scholar 

  99. Juanola-Falgarona M et al (2014) Dietary intake of vitamin K is inversely associated with mortality risk. J Nutr 144(5):743–750

    CAS  PubMed  Google Scholar 

  100. Nakao A et al (1991) Abnormal prothrombin (DES-gamma-carboxy prothrombin) in hepatocellular carcinoma. Hepatogastroenterology 38(5):450–453

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ishizuka M et al (2012) Effect of menatetrenone, a vitamin k2 analog, on recurrence of hepatocellular carcinoma after surgical resection: a prospective randomized controlled trial. Anticancer Res 32(12):5415–5420

    CAS  PubMed  Google Scholar 

  102. Riaz IB et al (2012) Role of vitamin K2 in preventing the recurrence of hepatocellular carcinoma after curative treatment: a meta-analysis of randomized controlled trials. BMC Gastroenterol 12:170

    PubMed  PubMed Central  Google Scholar 

  103. Habu D et al (2004) Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. JAMA 292(3):358–361

    CAS  PubMed  Google Scholar 

  104. Fusaro M et al (2017) Vitamin K plasma levels determination in human health. Clin Chem Lab Med 55(6):789–799

    CAS  PubMed  Google Scholar 

  105. Kohlmeier M et al (1997) Bone health of adult hemodialysis patients is related to vitamin K status. Kidney Int 51(4):1218–1221

    CAS  PubMed  Google Scholar 

  106. Pilkey RM et al (2007) Subclinical vitamin K deficiency in hemodialysis patients. Am J Kidney Dis 49(3):432–439

    CAS  PubMed  Google Scholar 

  107. Holden RM et al (2010) Vitamins K and D status in stages 3-5 chronic kidney disease. Clin J Am Soc Nephrol 5(4):590–597

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Schurgers LJ et al (2010) The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 5(4):568–575

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schlieper G et al (2011) Circulating nonphosphorylated carboxylated matrix gla protein predicts survival in ESRD. J Am Soc Nephrol 22(2):387–395

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Boxma PY et al (2012) Vitamin k intake and plasma desphospho-uncarboxylated matrix Gla-protein levels in kidney transplant recipients. PLoS One 7(10):e47991

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Delanaye P et al (2014) Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol 15:145

    PubMed  PubMed Central  Google Scholar 

  112. Aoun M et al (2017) High dephosphorylated-uncarboxylated MGP in hemodialysis patients: risk factors and response to vitamin K2, a pre-post intervention clinical trial. BMC Nephrol 18(1):191

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fusaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Due to Author name update.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusaro, M., Gallieni, M., Porta, C. et al. Vitamin K effects in human health: new insights beyond bone and cardiovascular health. J Nephrol 33, 239–249 (2020). https://doi.org/10.1007/s40620-019-00685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-019-00685-0

Keywords

Navigation