Skip to main content

Advertisement

Log in

ADPKD current management and ongoing trials

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Among the diseases that require renal replacement therapy (RRT), ADPKD is the fourth for incidence and prevalence. In Italy, there are at least 32,000 patients affected by ADPKD, of which about 2900 in dialysis. The pure costs of dialysis treatment for the Italian National Health Service can be conservatively estimated at 87 million euros per year. Even a modest slowdown in the evolution of the disease would obtain an important result in terms of reduction of health expenditure. In recent years, many new or repurposed drugs have been evaluated in clinical trials for ADPKD. In this review we will mainly focus on advanced stage clinical trials (phase 2 and 3). We have grouped these studies according to the molecular pathway addressed by the experimental drug or the therapeutic strategy. More than 10 years after the start of the first Phase III clinical trials in ADPKD, the first drug active in slowing disease progression is finally available. It cannot be considered a goal but only the beginning of a journey because of the significant side effects and the high cost of Tolvaptan. An exuberant basic research activity in the field, together with the large number of ongoing protocols, keep the nephrologists and their patients positive with regard to the discovery of new and better therapies in a not-too-distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pippias M, Kramer A, Noordzij M et al (2017) The european renal association – european dialysis and transplant association registry annual report 2014: a summary. Clin Kidney J 10:154–169

    PubMed  PubMed Central  Google Scholar 

  2. Spithoven EM, Kramer A, Meijer E et al (2014) Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival–an analysis of data from the ERA-EDTA Registry. Nephrol Dial Transplant 29(4):iv15–iv25

    Article  PubMed  Google Scholar 

  3. Porath B, Gainullin VG, Cornec-Le Gall E et al (2016) Mutations in GANAB, encoding the glucosidase iialpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 98:1193–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cornec-Le Gall E, Olson RJ, Besse W et al (2018) Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am J Hum Genet 102:832–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Solazzo A, Testa F, Giovanella S et al (2018) The prevalence of autosomal dominant polycystic kidney disease (ADPKD): a meta-analysis of European literature and prevalence evaluation in the Italian province of Modena suggest that ADPKD is a rare and underdiagnosed condition. PLoS One 13:e0190430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yamamura Y, Nakamura S, Itoh S et al (1998) OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther 287:860–867

    CAS  PubMed  Google Scholar 

  7. Gattone VH 2nd, Maser RL, Tian C et al (1999) Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev Genet 24:309–318

    Article  CAS  PubMed  Google Scholar 

  8. Gattone VH 2nd, Wang X, Harris PC et al (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9:1323–1326

    Article  CAS  PubMed  Google Scholar 

  9. Torres VE, Wang X, Qian Q et al (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10:363–364

    Article  CAS  PubMed  Google Scholar 

  10. Torres VE, Chapman AB, Devuyst O et al (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367:2407–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chapman AB, Guay-Woodford LM, Grantham JJ et al (2003) Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the consortium for radiologic imaging studies of polycystic kidney disease (CRISP) cohort. Kidney Int 64:1035–1045

    Article  PubMed  Google Scholar 

  12. Torres VE, Higashihara E, Devuyst O et al (2016) Effect of tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin J Am Soc Nephrol 11:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boertien WE, Meijer E, de Jong PE et al (2015) Short-term effects of tolvaptan in individuals with autosomal dominant polycystic kidney disease at various levels of kidney function. Am J Kidney Dis 65:833–841

    Article  CAS  PubMed  Google Scholar 

  14. Torres VE (2009) Vasopressin in chronic kidney disease: an elephant in the room? Kidney Int 76:925–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Torres VE, Chapman AB, Devuyst O et al (2018) Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol Dial Transplant 33(3):477–489. https://doi.org/10.1093/ndt/gfx043

    Article  CAS  PubMed  Google Scholar 

  16. Gansevoort RT, Meijer E, Chapman AB et al (2016) Albuminuria and tolvaptan in autosomal-dominant polycystic kidney disease: results of the TEMPO 3:4 Trial. Nephrol Dial Transplant 31:1887–1894

    Article  CAS  PubMed  Google Scholar 

  17. Watkins PB, Lewis JH, Kaplowitz N et al (2015) Clinical pattern of tolvaptan-associated liver injury in subjects with autosomal dominant polycystic kidney disease: analysis of clinical trials database. Drug Saf 38:1103–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres VE, Chapman AB, Devuyst O et al (2017) Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med 377:1930–1942

    Article  CAS  PubMed  Google Scholar 

  19. Nagao S, Nishii K, Katsuyama M et al (2006) Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J Am Soc Nephrol 17:2220–2227

    Article  CAS  PubMed  Google Scholar 

  20. Wang CJ, Creed C, Winklhofer FT et al (2011) Water prescription in autosomal dominant polycystic kidney disease: a pilot study. Clin J Am Soc Nephrol 6:192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barash I, Ponda MP, Goldfarb DS et al (2010) A pilot clinical study to evaluate changes in urine osmolality and urine cAMP in response to acute and chronic water loading in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 5:693–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Higashihara E, Nutahara K, Tanbo M et al (2014) Does increased water intake prevent disease progression in autosomal dominant polycystic kidney disease? Nephrol Dial Transplant 29:1710–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark WF, Sontrop JM, Huang SH et al (2013) The chronic kidney disease water intake trial (WIT): results from the pilot randomised controlled trial. BMJ Open 3:e003666

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sontrop JM, Huang SH, Garg AX et al (2015) Effect of increased water intake on plasma copeptin in patients with chronic kidney disease: results from a pilot randomised controlled trial. BMJ Open 5:e008634

    Article  PubMed  PubMed Central  Google Scholar 

  25. El-Damanawi R, Lee M, Harris T et al (2018) Randomised controlled trial of high versus ad libitum water intake in patients with autosomal dominant polycystic kidney disease: rationale and design of the DRINK feasibility trial. BMJ Open 8:e022859

    PubMed  PubMed Central  Google Scholar 

  26. <e018794.full.pdf>

  27. Ruggenenti P, Remuzzi A, Ondei P et al (2005) Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int 68:206–216

    Article  CAS  PubMed  Google Scholar 

  28. Silva P, Stoff JS, Leone DR et al (1985) Mode of action of somatostatin to inhibit secretion by shark rectal gland. Am J Physiol 249:R329–R334

    CAS  PubMed  Google Scholar 

  29. Sullivan LP, Wallace DP, Grantham JJ (1998) Chloride and fluid secretion in polycystic kidney disease. J Am Soc Nephrol 9:903–916

    CAS  PubMed  Google Scholar 

  30. Bhandari S, Watson N, Long E et al (2008) Expression of somatostatin and somatostatin receptor subtypes 1-5 in human normal and diseased kidney. J Histochem Cytochem 56:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Keimpema L, Nevens F, Vanslembrouck R et al (2009) Lanreotide reduces the volume of polycystic liver: a randomized, double-blind, placebo-controlled trial. Gastroenterology 137(1661–1668):e1661–e1662

    Article  CAS  Google Scholar 

  32. Caroli A, Perico N, Perna A et al (2013) Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 382:1485–1495

    Article  CAS  PubMed  Google Scholar 

  33. Perico N, Ruggenenti P, Perna A et al (2019) Octreotide-LAR in later-stage autosomal dominant polycystic kidney disease (ALADIN 2): a randomized, double-blind, placebo-controlled, multicenter trial. PLoS Med 16:e1002777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meijer E, Visser FW, van Aerts RMM et al (2018) Effect of Lanreotide on Kidney Function in Patients With Autosomal Dominant Polycystic Kidney Disease: The DIPAK 1 Randomized Clinical Trial. JAMA. https://doi.org/10.1001/jama.2018.15870

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deshmukh GD, Radin NS, Gattone VH 2nd et al (1994) Abnormalities of glycosphingolipid, sulfatide, and ceramide in the polycystic (cpk/cpk) mouse. J Lipid Res 35:1611–1618

    CAS  PubMed  Google Scholar 

  36. Natoli TA, Smith LA, Rogers KA et al (2010) Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 16:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Natoli TA, Husson H, Rogers KA et al (2012) Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease. Hum Mol Genet 21:3397–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Irazabal MV, Rangel LJ, Bergstralh EJ et al (2015) Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol 26(1):160–172. https://doi.org/10.1681/ASN.2013101138

    Article  CAS  PubMed  Google Scholar 

  39. Padovano V, Podrini C, Boletta A et al (2018) Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 14(11):678–687. https://doi.org/10.1038/s41581-018-0051-1

    Article  CAS  PubMed  Google Scholar 

  40. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  41. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiaravalli M, Rowe I, Mannella V et al (2016) 2-Deoxy-d-Glucose ameliorates PKD progression. J Am Soc Nephrol 27(7):1958–1969. https://doi.org/10.1681/ASN.2015030231

    Article  CAS  PubMed  Google Scholar 

  43. Rowe I, Chiaravalli M, Mannella V et al (2013) Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 19:488–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Riwanto M, Kapoor S, Rodriguez D et al (2016) Inhibition of aerobic glycolysis attenuates disease progression in polycystic kidney disease. PLoS One 11:e0146654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nikonova AS, Deneka AY, Kiseleva AA et al (2018) Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD). FASEB J 32:2735–2746

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ibraghimov-Beskrovnaya O, Natoli TA (2011) mTOR signaling in polycystic kidney disease. Trends Mol Med 17:625–633

    Article  CAS  PubMed  Google Scholar 

  47. Takiar V, Nishio S, Seo-Mayer P et al (2011) Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci USA 108:2462–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou X, Fan LX, Sweeney WE Jr et al (2013) Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease. J Clin Invest 123:3084–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tao Y, Kim J, Schrier RW et al (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16:46–51

    Article  CAS  PubMed  Google Scholar 

  50. Serra AL, Poster D, Kistler AD et al (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829

    Article  CAS  PubMed  Google Scholar 

  51. Walz G, Budde K, Mannaa M et al (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  CAS  PubMed  Google Scholar 

  52. Warner G, Hein KZ, Nin V et al (2016) Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol 27(5):1437–1447. https://doi.org/10.1681/ASN.2015020132

    Article  CAS  PubMed  Google Scholar 

  53. Kipp KR, Rezaei M, Lin L et al (2016) A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol 310:F726–F731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jacob A, Torres CMB, Kruger Samantha, Schimmel Margaret F, Weimbs Thomas (2017) A ketogenic diet slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 28:1

    Article  Google Scholar 

  55. Wahl PR, Serra AL, Le Hir M et al (2006) Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 21(3):598–604. https://doi.org/10.1093/ndt/gfi181

    Article  CAS  PubMed  Google Scholar 

  56. Canaud G, Knebelmann B, Harris PC et al (2010) Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: what is the appropriate serum level? Am J Transplant 10:1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grantham JJ, Torres VE, Chapman AB et al (2006) Volume progression in polycystic kidney disease. N Engl J Med 354:2122–2130

    Article  CAS  PubMed  Google Scholar 

  58. Hogan MC, Masyuk TV, Page LJ et al (2010) Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol 21:1052–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    CAS  PubMed  Google Scholar 

  60. Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  CAS  PubMed  Google Scholar 

  61. Priolo C, Henske EP (2013) Metabolic reprogramming in polycystic kidney disease. Nat Med 19:407–409

    Article  CAS  PubMed  Google Scholar 

  62. Mohanti BK, Rath GK, Anantha N et al (1996) Improving cancer radiotherapy with 2-deoxy-d-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys 35:103–111

    Article  CAS  PubMed  Google Scholar 

  63. Raez LE, Papadopoulos K, Ricart AD et al (2013) A phase I dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 71:523–530

    Article  CAS  PubMed  Google Scholar 

  64. Singh D, Banerji AK, Dwarakanath BS et al (2005) Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol 181:507–514

    Article  PubMed  Google Scholar 

  65. Stein M, Lin H, Jeyamohan C et al (2010) Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70:1388–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Venkataramanaa NK, Venkatesh PK, Dwarakanath BS et al (2013) Protective effect on normal brain tissue during a combinational therapy of 2-deoxy-d-glucose and hypofractionated irradiation in malignant gliomas. Asian J Neurosurg 8:9–14

    Article  PubMed  PubMed Central  Google Scholar 

  67. Magistroni R, Boletta A (2017) Defective glycolysis and the use of 2-deoxy-d-glucose in polycystic kidney disease: from animal models to humans. J Nephrol 30:511–519

    Article  CAS  PubMed  Google Scholar 

  68. Menezes LF, Lin CC, Zhou F et al (2016) Fatty Acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. EBioMedicine 5:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lakhia R, Yheskel M, Flaten A et al (2018) PPARalpha agonist fenofibrate enhances fatty acid beta-oxidation and attenuates polycystic kidney and liver disease in mice. Am J Physiol Renal Physiol 314:F122–F131

    Article  PubMed  CAS  Google Scholar 

  70. Blazer-Yost BL, Haydon J, Eggleston-Gulyas T et al (2010) Pioglitazone attenuates cystic burden in the PCK rodent model of polycystic kidney disease. PPAR Res 2010:274376

    PubMed  PubMed Central  Google Scholar 

  71. Dai B, Liu Y, Mei C et al (2010) Rosiglitazone attenuates development of polycystic kidney disease and prolongs survival in Han:SPRD rats. Clin Sci (Lond) 119:323–333

    Article  CAS  Google Scholar 

  72. Flaig SM, Gattone VH, Blazer-Yost BL (2016) Inhibition of cyst growth in PCK and Wpk rat models of polycystic kidney disease with low doses of peroxisome proliferator-activated receptor gamma agonists. J Transl Int Med 4:118–126

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yoshihara D, Kurahashi H, Morita M et al (2011) PPAR-gamma agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol 300:F465–F474

    Article  CAS  PubMed  Google Scholar 

  74. Di Iorio BR, Cupisti A, D’Alessandro C et al (2018) Nutritional therapy in autosomal dominant polycystic kidney disease. J Nephrol 31:635–643

    Article  PubMed  CAS  Google Scholar 

  75. Girardat-Rotar L, Puhan MA, Braun J et al (2018) Long-term effect of coffee consumption on autosomal dominant polycystic kidneys disease progression: results from the Suisse ADPKD, a prospective longitudinal cohort study. J Nephrol 31:87–94

    Article  CAS  PubMed  Google Scholar 

  76. Testa F, Marchiò M, Belli M et al (2019) A pilot study to evaluate Tolerability and Safety of a Modified Atkins Diet in ADPKD patients. PharmaNutrition 9:100154. https://doi.org/10.1016/j.phanu

    Article  Google Scholar 

  77. Sweeney WE Jr, Hamahira K, Sweeney J et al (2003) Combination treatment of PKD utilizing dual inhibition of EGF-receptor activity and ligand bioavailability. Kidney Int 64:1310–1319

    Article  CAS  PubMed  Google Scholar 

  78. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). https://doi.org/10.3390/cancers9050052

    Article  Google Scholar 

  79. Sweeney WE, Frost P, Avner ED (2017) Tesevatinib ameliorates progression of polycystic kidney disease in rodent models of autosomal recessive polycystic kidney disease. World J Nephrol 6:188–200

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sweeney WE, Chen Y, Nakanishi K et al (2000) Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int 57:33–40

    Article  CAS  PubMed  Google Scholar 

  81. Tesar V, Ciechanowski K, Pei Y et al (2017) Bosutinib versus placebo for autosomal dominant polycystic kidney disease. J Am Soc Nephrol 28(11):3404–3413. https://doi.org/10.1681/ASN.2016111232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sweeney WE Jr, von Vigier RO, Frost P et al (2008) Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol 19:1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Harrison RK (2016) Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov 15:817–818

    Article  CAS  PubMed  Google Scholar 

  84. Iliuta IA, Kitchlu A, Pei Y (2017) Methodological issues in clinical trials of polycystic kidney disease: a focused review. J Nephrol 30:363–371

    Article  PubMed  Google Scholar 

  85. Watnick T, Germino GG (2010) mTOR inhibitors in polycystic kidney disease. N Engl J Med 363:879–881

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Magistroni.

Ethics declarations

Conflict of interest

R.M. was involved in the trials of Tolvaptan sponsored by Otsuka Pharmaceutical as Principal Investigator. R.M. is scientific advisor of Otsuka Italia. F.T. does not declare any conflict of interest.

Ethical statement

This paper did not involve Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Testa, F., Magistroni, R. ADPKD current management and ongoing trials. J Nephrol 33, 223–237 (2020). https://doi.org/10.1007/s40620-019-00679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-019-00679-y

Keywords

Navigation