Skip to main content

Advertisement

Log in

Proteomic profiling of peritoneal dialysis effluent-derived extracellular vesicles: a longitudinal study

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Peritoneal dialysis (PD) is an optimal renal replacement therapy for patients while waiting for kidney transplantation, but functional failure of the peritoneal membrane (PM), mainly induced by exposure to PD solutions, force many patients to early abandon PD therapy. PM function is evaluated by the peritoneal equilibration test (PET), a tedious technique only detecting alterations in extensively damaged PM. In a previous study, we showed that peritoneal dialysis effluent contained extracellular vesicles (PDE-EV), and that their proteome was significantly different between newly enrolled and long-term PD patients. Here, we report the results of a longitudinal study and compare PDE-EV proteome changes with PET results.

Methods

PDE was collected from 11 patients every 6 months (coincident with PET controls) from 0 months up to 24 months on PD. PDE-EV were isolated by size-exclusion chromatography and the proteome was analyzed by mass spectrometry (LC–MS/MS). Bioinformatic analyses were conducted to evaluate differences between groups.

Results

At follow-up endpoint, patients were classified as Stable (n = 7) or Unstable (n = 4) according to PET evolution. Strikingly, PDE-EV from the Stable group showed a significantly higher protein expression compared to Unstable patients already at 6 months on PD, when PET alterations had not been detected yet.

Conclusions

PDE-EV proteome show alterations much earlier than PET monitoring, thus unveiling the potential of PDE-EV proteins as feasible biomarkers of PM alteration in PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Javaid MM, Khan BA, Subramanian S (2019) Peritoneal dialysis as initial dialysis modality: a viable option for late-presenting end-stage renal disease. J Nephrol 32:51–56. https://doi.org/10.1007/s40620-018-0485-3

    Article  PubMed  Google Scholar 

  2. Rigoni M, Torri E, Nollo G et al (2017) Survival and time-to-transplantation of peritoneal dialysis versus hemodialysis for end-stage renal disease patients: competing-risks regression model in a single Italian center experience. J Nephrol 30:441–447. https://doi.org/10.1007/s40620-016-0366-6

    Article  CAS  PubMed  Google Scholar 

  3. Jansen MAM, Hart AAM, Korevaar JC et al (2002) Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 62:1046–1053. https://doi.org/10.1046/j.1523-1755.2002.00505.x

    Article  PubMed  Google Scholar 

  4. Zazzeroni L, Pasquinelli G, Nanni E et al (2017) Comparison of quality of life in patients undergoing hemodialysis and peritoneal dialysis: a systematic review and meta-analysis. Kidney Blood Press Res 42:717–727. https://doi.org/10.1159/000484115

    Article  PubMed  Google Scholar 

  5. Aroeira LS, Aguilera A, Sánchez-Tomero JA et al (2007) Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 18:2004–2013. https://doi.org/10.1681/ASN.2006111292

    Article  CAS  PubMed  Google Scholar 

  6. van Biesen W, Heimburger O, Krediet R et al (2010) Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant 25:2052–2062. https://doi.org/10.1093/ndt/gfq100

    Article  PubMed  Google Scholar 

  7. Herzog R, Boehm M, Unterwurzacher M et al (2018) Effects of alanyl-glutamine treatment on the peritoneal dialysis effluent proteome reveal pathomechanism-associated molecular signatures. Mol Cell Proteomics 17:516–532. https://doi.org/10.1074/mcp.RA117.000186

    Article  CAS  PubMed  Google Scholar 

  8. Zavvos V, Buxton AT, Evans C et al (2017) A prospective, proteomics study identified potential biomarkers of encapsulating peritoneal sclerosis in peritoneal effluent. Kidney Int 92:988–1002. https://doi.org/10.1016/j.kint.2017.03.030

    Article  CAS  PubMed  Google Scholar 

  9. Carreras-Planella L, Soler-Majoral J, Rubio-Esteve C et al (2017) Characterization and proteomic profile of extracellular vesicles from peritoneal dialysis efflux. PLoS One 12:e0176987. https://doi.org/10.1371/journal.pone.0176987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lynöe N, Sandlund M, Dahlqvist G, Jacobsson L (1991) Informed consent: study of quality of information given to participants in a clinical trial. BMJ 303:610–613

    Article  Google Scholar 

  11. Mujais S, Nolph K, Gokal R et al (2000) Evaluation and management of ultrafiltration problems in peritoneal dialysis. International society for peritoneal dialysis Ad Hoc committee on ultrafiltration management in peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 20(Suppl 4):S5–21

    Google Scholar 

  12. Rocco MV, Jordan JR, Burkart JM (1995) Changes in peritoneal transport during the first month of peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 15:12–17

    CAS  Google Scholar 

  13. Johnson DW, Mudge DW, Blizzard S et al (2004) A comparison of peritoneal equilibration tests performed 1 and 4 weeks after PD commencement. Perit Dial Int J Int Soc Perit Dial 24:460–465

    Google Scholar 

  14. Pathan M, Keerthikumar S, Ang C-S et al (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601. https://doi.org/10.1002/pmic.201400515

    Article  CAS  PubMed  Google Scholar 

  15. Pathan M, Keerthikumar S, Chisanga D et al (2017) A novel community driven software for functional enrichment analysis of extracellular vesicles data. J Extracell Vesicles 6:1321455. https://doi.org/10.1080/20013078.2017.1321455

    Article  PubMed  PubMed Central  Google Scholar 

  16. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  Google Scholar 

  17. Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267

    Article  CAS  Google Scholar 

  18. Liberzon A, Subramanian A, Pinchback R et al (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740. https://doi.org/10.1093/bioinformatics/btr260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–220. https://doi.org/10.1093/nar/gkq537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  21. Pearson LJ, Klaharn I, Thongsawang B et al (2017) Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers. PLoS One 12:e0178601. https://doi.org/10.1371/journal.pone.0178601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheifetz S, Bellón T, Calés C et al (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030

    CAS  PubMed  Google Scholar 

  23. Kato M, Placencio-Hickok VR, Madhav A et al (2019) Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene 38:716–730. https://doi.org/10.1038/s41388-018-0461-3

    Article  CAS  PubMed  Google Scholar 

  24. Epstein JC, Wilson MS, Wilkosz S et al (2006) Human peritoneal adhesions show evidence of tissue remodeling and markers of angiogenesis. Dis Colon Rectum 49:1885–1892. https://doi.org/10.1007/s10350-006-0747-3

    Article  PubMed  Google Scholar 

  25. Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C et al (2017) The role of endoglin in post-ischemic revascularization. Angiogenesis 20:1–24. https://doi.org/10.1007/s10456-016-9535-4

    Article  CAS  PubMed  Google Scholar 

  26. Rossi E, Bernabeu C, Smadja DM (2019) Endoglin as an adhesion molecule in mature and progenitor endothelial cells: a function beyond TGF-β. Front Med. https://doi.org/10.3389/fmed.2019.00010

    Article  Google Scholar 

  27. Peter MR, Jerkic M, Sotov V et al (2014) Impaired resolution of inflammation in the Endoglin heterozygous mouse model of chronic colitis. Mediators Inflamm 2014:1–13. https://doi.org/10.1155/2014/767185

    Article  CAS  Google Scholar 

  28. Sauzay C, Voutetakis K, Chatziioannou A et al (2019) CD90/Thy-1, a cancer-associated cell surface signaling molecule. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2019.00066

    Article  PubMed  PubMed Central  Google Scholar 

  29. Groeneveld TWL, Oroszlán M, Owens RT et al (2005) Interactions of the extracellular matrix proteoglycans decorin and biglycan with C1q and collectins. J Immunol Baltim Md 1950 175:4715–4723

    CAS  Google Scholar 

  30. Yung S, Thomas GJ, Stylianou E et al (1995) Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans. Am J Pathol 146:520–529

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Corciulo S, Nicoletti MC, Mastrofrancesco L et al (2019) AQP1-containing exosomes in peritoneal dialysis effluent as biomarker of dialysis efficiency. Cells 8:330. https://doi.org/10.3390/cells8040330

    Article  PubMed Central  Google Scholar 

  32. Akbari S, Abou-Arkoub R, Sun S et al (2017) Microparticle formation in peritoneal dialysis: a proof of concept study. Can J Kidney Health Dis 4:205435811769982. https://doi.org/10.1177/2054358117699829

    Article  Google Scholar 

  33. Aufricht C, Beelen R, Eberl M et al (2017) Biomarker research to improve clinical outcomes of peritoneal dialysis: consensus of the European Training and Research in Peritoneal Dialysis (EuTRiPD) network. Kidney Int 92:824–835. https://doi.org/10.1016/j.kint.2017.02.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yáñez-Mó (Unidad de Investigación, Hospital Sta Cristina, IIS-IP; Departamento Biología Molecular/CBM-SO, UAM) and Dr. Francisco Sáchez-Madrid (Servicio de Inmunología, Hospital Universitario de la Princesa, IIS-IP, UAM; Cell–cell Communication Laboratory, CNIC) for the anti-CD9 and anti-CD63 antibodies. Also thanks to Marco A. Fernández from the Flow Cytometry Platform, IGTP).

Funding

This work was supported by the PI16/00072 project, integrated in the National R + D + I and funded by the ISCIII and the European Regional Development Fund (http://www.isciii.es), the SGR program of Generalitat de Catalunya (2017-SGR-301 REMAR Group) and ISCIII-REDinREN (RD16/0009 Feder Funds). LCP is sponsored by the Spanish Government FPU grant (“Formación de Personal Universitario”, FPU17/01444); JSM is sponsored by a “Germans Trias i Pujol” University Hospital grant “Ajuts Germans Trias Talents 2017”; MF is funded by the Catalan Health Department (Generalitat de Catalunya) contract PERIS (SLT002/16/00069). FEB is a researcher from Fundació Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, supported by the Health Department of the Catalan Government (Direcció General de Recerca i Innovació, Dept. Salut, Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Contributions

Francesc E Borras, Maria Isabel Troya-Saborido and Jordi Bonal designed the study; Maria Isabel Troya-Saborido and Jordi Soler-Majoral recruited the patients; Cristina Rubio-Esteve and Miriam Morón-Font collected, prepared and processed the samples; Laura Carreras-Planella and Jordi Soler-Majoral performed most of the experiments and analyzed the results; Marcella Franquesa analyzed and contributed to interpretation of the results; Laura Carreras-Planella, Jordi Soler-Majoral, Maria Isabel Troya-Saborido and Francesc E Borras drafted and revised the paper; all authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Maria Isabel Troya-Saborido or Francesc E. Borràs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethical Committee of “Germans Trias i Pujol” Hospital approved the study (REF PI-17-171), and all subjects gave their written consent according to the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreras-Planella, L., Soler-Majoral, J., Rubio-Esteve, C. et al. Proteomic profiling of peritoneal dialysis effluent-derived extracellular vesicles: a longitudinal study. J Nephrol 32, 1021–1031 (2019). https://doi.org/10.1007/s40620-019-00658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-019-00658-3

Keywords

Navigation