Skip to main content

Advertisement

Log in

The role of endoglin in post-ischemic revascularization

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silvestre JS, Smadja DM, Levy BI (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 93:1743–1802. doi:10.1152/physrev.00006.2013

    Article  CAS  PubMed  Google Scholar 

  2. Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104:5–21. doi:10.1007/s00395-008-0760-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22:617–625

    Article  CAS  PubMed  Google Scholar 

  4. Geudens I, Gerhardt H (2011) Coordinating cell behaviour during blood vessel formation. Development 138:4569–4583

    Article  CAS  PubMed  Google Scholar 

  5. Faber JE, Chilian WM, Deindl E et al (2014) A brief etymology of the collateral circulation. Arterioscler Thromb Vasc Biol 34:1854–1859. doi:10.1161/ATVBAHA.114.303929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Resnick N, Yahav H, Shay-Salit A et al (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199. doi:10.1016/S0079-6107(02)00052-4

    Article  PubMed  Google Scholar 

  7. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395. doi:10.1038/74651

    Article  CAS  PubMed  Google Scholar 

  8. Qiao L, Xie L, Shi K et al (2012) Notch signaling change in pulmonary vascular remodeling in rats with pulmonary hypertension and its implication for therapeutic intervention. PLoS ONE 7:e51514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Varik BJ, Rennenberg RJ, Reutelingsperger CP et al (2012) Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet 3:290

    PubMed  PubMed Central  Google Scholar 

  10. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imoukhuede PI, Popel AS (2011) Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp Cell Res 317:955–965. doi:10.1016/j.yexcr.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  12. ten Dijke P, Goumans MJ, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11:79–89. doi:10.1007/s10456-008-9101-9

    Article  CAS  PubMed  Google Scholar 

  13. Nassiri F, Cusimano MD, Scheithauer BW et al (2011) Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 31:2283–2290

    CAS  PubMed  Google Scholar 

  14. Kapur NK, Morine KJ, Letarte M (2013) Endoglin: a critical mediator of cardiovascular health. Vasc Heal Risk Manag 9:195–206. doi:10.2147/VHRM.S29144

    Article  CAS  Google Scholar 

  15. Kuiper P, Hawinkels LJ, de Jonge-Muller ES et al (2011) Angiogenic markers endoglin and vascular endothelial growth factor in gastroenteropancreatic neuroendocrine tumors. World J Gastroenterol 17:219–225. doi:10.3748/wjg.v17.i2.219

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anderberg C, Cunha SI, Zhai Z et al (2013) Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210:563–579. doi:10.1084/jem.20120662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barnett JM, Suarez S, McCollum GW, Penn JS (2014) Endoglin promotes angiogenesis in cell- and animal-based models of retinal neovascularization. Invest Ophthalmol Vis Sci 55:6490–6498. doi:10.1167/iovs.14-14945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park S, Dimaio TA, Liu W et al (2013) Endoglin regulates the activation and quiescence of endothelium by participating in canonical and non-canonical TGF-beta signaling pathways. J Cell Sci 126:1392–1405. doi:10.1242/jcs.117275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jerkic M, Rodriguez-Barbero A, Prieto M et al (2006) Reduced angiogenic responses in adult Endoglin heterozygous mice. Cardiovasc Res 69:845–854. doi:10.1016/j.cardiores.2005.11.020

    Article  CAS  PubMed  Google Scholar 

  20. van Laake LW, van den Driesche S, Post S et al (2006) Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 114:2288–2297. doi:10.1161/CIRCULATIONAHA.106.639161

    Article  PubMed  CAS  Google Scholar 

  21. Duwel A, Eleno N, Jerkic M et al (2007) Reduced tumor growth and angiogenesis in endoglin-haploinsufficient mice. Tumour Biol 28:1–8. doi:10.1159/000097040

    PubMed  Google Scholar 

  22. Seghers L, de Vries MR, Pardali E et al (2012) Shear induced collateral artery growth modulated by endoglin but not by ALK1. J Cell Mol Med 16:2440–2450. doi:10.1111/j.1582-4934.2012.01561.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perez-Gomez E, Del Castillo G, Juan Francisco S et al (2010) The role of the TGF-beta coreceptor endoglin in cancer. Sci World J 10:2367–2384. doi:10.1100/tsw.2010.230

    Article  CAS  Google Scholar 

  24. Lin H, Huang CC, Ou YC et al (2012) High immunohistochemical expression of TGF-beta1 predicts a poor prognosis in cervical cancer patients who harbor enriched endoglin microvessel density. Int J Gynecol Pathol 31:482–489. doi:10.1097/PGP.0b013e31824c23a4

    Article  CAS  PubMed  Google Scholar 

  25. Fonsatti E, Nicolay HJ, Altomonte M et al (2010) Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 86:12–19. doi:10.1093/cvr/cvp332

    Article  CAS  PubMed  Google Scholar 

  26. Seon BK, Haba A, Matsuno F et al (2011) Endoglin-targeted cancer therapy. Curr Drug Deliv 8:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rossi E, Sanz-Rodriguez F, Eleno N et al (2013) Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 121:403–415. doi:10.1182/blood-2012-06-435347

    Article  CAS  PubMed  Google Scholar 

  28. Rossi E, Smadja DM, Boscolo E et al (2016) Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol Life Sci 73:1715–1739. doi:10.1007/s00018-015-2099-4

    Article  CAS  PubMed  Google Scholar 

  29. Abramsson A, Berlin O, Papayan H et al (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105:112–117

    Article  CAS  PubMed  Google Scholar 

  30. Birbrair A, Zhang T, Wang Z-M et al (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128:81–93. doi:10.1042/CS20140278

    Article  CAS  Google Scholar 

  31. Lee JW, Bae SH, Jeong JW et al (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36:1–12. doi:10.1038/emm.2004.1

    Article  PubMed  Google Scholar 

  32. Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270:13333–13340

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77:638–643

    Article  CAS  PubMed  Google Scholar 

  34. Gray MJ, Zhang J, Ellis LM et al (2005) HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24:3110–3120. doi:10.1038/sj.onc.1208513

    Article  CAS  PubMed  Google Scholar 

  35. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129. doi:10.1038/nrc2780

    Article  CAS  PubMed  Google Scholar 

  36. Saylor PJ, Escudier B, Michaelson MD (2012) Importance of fibroblast growth factor receptor in neovascularization and tumor escape from antiangiogenic therapy. Clin Genitourin Cancer 10:77–83. doi:10.1016/j.clgc.2012.01.010

    Article  PubMed  Google Scholar 

  37. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  CAS  PubMed  Google Scholar 

  38. Chappell JC, Wiley DM, Bautch VL (2011) Regulation of blood vessel sprouting. Semin Cell Dev Biol 22:1005–1011. doi:10.1016/j.semcdb.2011.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3:a006569. doi:10.1101/cshperspect.a006569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Larrivee B, Prahst C, Gordon E et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22:489–500. doi:10.1016/j.devcel.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  CAS  PubMed  Google Scholar 

  42. Li B, Sharpe EE, Maupin AB et al (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497. doi:10.1096/fj.05-5137fje

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Xu Q (2014) Stem/Progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol 34:1114–1119. doi:10.1161/ATVBAHA.114.303809

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi J, Kusano KF, Masuo O et al (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328

    Article  CAS  PubMed  Google Scholar 

  45. Lopez-Holgado N, Alberca M, Sanchez-Guijo FM et al (2009) Prospective comparative analysis of the angiogenic capacity of monocytes and CD133 + cells in a murine model of hind limb ischemia. Cytotherapy 11:1041–1051. doi:10.3109/14653240903191719

    Article  CAS  PubMed  Google Scholar 

  46. Ma F, Morancho A, Montaner J, Rosell A (2015) Endothelial progenitor cells and revascularization following stroke. Brain Res 1623:150–159. doi:10.1016/j.brainres.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  47. Song JW, Bazou D, Munn LL (2012) Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr Biol (Camb) 4:857–862. doi:10.1039/c2ib20061a

    Article  CAS  Google Scholar 

  48. Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195:122–143. doi:10.1159/000331410

    Article  CAS  PubMed  Google Scholar 

  49. Stratman AN, Davis GE (2012) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18:68–80. doi:10.1017/S1431927611012402

    Article  CAS  PubMed  Google Scholar 

  50. Stratman AN, Malotte KM, Mahan RD et al (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101. doi:10.1182/blood-2009-05-222364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murakami M (2012) Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int J Vasc Med 2012:293641. doi:10.1155/2012/293641

    PubMed  Google Scholar 

  52. Wang YH, Yan ZQ, Shen BR et al (2009) Vascular smooth muscle cells promote endothelial cell adhesion via microtubule dynamics and activation of paxillin and the extracellular signal-regulated kinase (ERK) pathway in a co-culture system. Eur J Cell Biol 88:701–709. doi:10.1016/j.ejcb.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  53. Gaengel K, Genové G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638. doi:10.1161/ATVBAHA.107.161521

    Article  CAS  PubMed  Google Scholar 

  54. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28:1703–1713. doi:10.1161/ATVBAHA.108.172015

    Article  CAS  PubMed  Google Scholar 

  55. Liu J, Zeng L, Kennedy RM et al (2012) betaPix plays a dual role in cerebral vascular stability and angiogenesis, and interacts with integrin alphavbeta8. Dev Biol 363:95–105. doi:10.1016/j.ydbio.2011.12.022

    Article  CAS  PubMed  Google Scholar 

  56. Abraham S, Kogata N, Fassler R, Adams RH (2008) Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ Res 102:562–570. doi:10.1161/CIRCRESAHA.107.167908

    Article  CAS  PubMed  Google Scholar 

  57. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL et al (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 29:345–355

    Article  CAS  PubMed  Google Scholar 

  58. Zemani F, Silvestre JS, Fauvel-Lafeve F et al (2008) Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol 28:644–650. doi:10.1161/ATVBAHA.107.160044

    Article  CAS  PubMed  Google Scholar 

  59. Karin N (2010) The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol 88:463–473. doi:10.1189/jlb.0909602

    Article  CAS  PubMed  Google Scholar 

  60. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864. doi:10.1038/nm1075

    Article  CAS  PubMed  Google Scholar 

  61. Hamdan R, Zhou Z, Kleinerman ES (2011) SDF-1alpha induces PDGF-B expression and the differentiation of bone marrow cells into pericytes. Mol Cancer Res 9:1462–1470. doi:10.1158/1541-7786.MCR-11-0190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Melchionna R, Di Carlo A, De Mori R et al (2010) Induction of myogenic differentiation by SDF-1 via CXCR4 and CXCR7 receptors. Muscle Nerve 41:828–835. doi:10.1002/mus.21611

    Article  CAS  PubMed  Google Scholar 

  63. Cheng M, Qin G (2012) Progenitor cell mobilization and recruitment: SDF-1, CXCR4, alpha4-integrin, and c-kit. Prog Mol Biol Transl Sci 111:243–264. doi:10.1016/B978-0-12-398459-3.00011-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alon R, Shulman Z (2011) Chemokine triggered integrin activation and actin remodeling events guiding lymphocyte migration across vascular barriers. Exp Cell Res 317:632–641. doi:10.1016/j.yexcr.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  65. Malinin NL, Pluskota E, Byzova TV (2012) Integrin signaling in vascular function. Curr Opin Hematol 19:206–211. doi:10.1097/MOH.0b013e3283523df0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang L, Dong Z, Zhang Y, Miao J (2012) The roles of integrin beta4 in vascular endothelial cells. J Cell Physiol 227:474–478. doi:10.1002/jcp.22769

    Article  CAS  PubMed  Google Scholar 

  67. Faber JE, Zhang H, Lassance-Soares RM et al (2011) Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol 31:1748–1756. doi:10.1161/ATVBAHA.111.227314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deindl E, Schaper W (2013) Editorial: avenue to arteriogenesis. Curr Vasc Pharmacol 11:2–4

    Article  PubMed  Google Scholar 

  69. Grundmann S, Piek JJ, Pasterkamp G, Hoefer IE (2007) Arteriogenesis: basic mechanisms and therapeutic stimulation. Eur J Clin Invest 37:755–766. doi:10.1111/j.1365-2362.2007.01861.x

    Article  CAS  PubMed  Google Scholar 

  70. Hudlicka O, Brown D (1996) Postnatal Growth of the Heart and Its Blood Vessels. J Vasc Res 33:266–287. doi:10.1159/000159155

    Article  CAS  PubMed  Google Scholar 

  71. Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431. doi:10.1038/nature03952

    Article  CAS  PubMed  Google Scholar 

  72. Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775

    Article  CAS  PubMed  Google Scholar 

  73. Yuan S, Kevil CG (2016) Nitric oxide and hydrogen sulfide regulation of ischemic vascular remodeling. Microcirculation 23:134–145. doi:10.1111/micc.12248

    Article  CAS  PubMed  Google Scholar 

  74. Hoefer IE, van Royen N, Rectenwald JE et al (2004) Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms. Circ Res 94:1179–1185. doi:10.1161/01.RES.0000126922.18222.F0

    Article  CAS  PubMed  Google Scholar 

  75. Troidl K, Tribulova S, Cai W-J et al (2010) Effects of endogenous nitric oxide and of DETA NONOate in arteriogenesis. J Cardiovasc Pharmacol 55:153–160. doi:10.1097/FJC.0b013e3181c9556f

    Article  CAS  PubMed  Google Scholar 

  76. Baeyens N, Larrivée B, Ola R et al (2016) Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia (HHT). J Cell Biol. doi:10.1083/jcb.201603106

    PubMed  Google Scholar 

  77. Demicheva E, Hecker M, Korff T (2008) Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Circ Res 103:477–484. doi:10.1161/CIRCRESAHA.108.177782

    Article  CAS  PubMed  Google Scholar 

  78. Stabile E, Kinnaird T, la Sala A et al (2006) CD8 + T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4 + mononuclear cells through the expression of interleukin-16. Circulation 113:118–124. doi:10.1161/CIRCULATIONAHA.105.576702

    Article  PubMed  Google Scholar 

  79. van Weel V, Toes REM, Seghers L et al (2007) Natural killer cells and CD4 + T-cells modulate collateral artery development. Arterioscler Thromb Vasc Biol 27:2310–2318. doi:10.1161/ATVBAHA.107.151407

    Article  PubMed  CAS  Google Scholar 

  80. Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438. doi:10.1038/7434

    Article  CAS  PubMed  Google Scholar 

  81. Kalka C, Masuda H, Takahashi T et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427. doi:10.1073/pnas.070046397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheifetz S, Bellon T, Cales C et al (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030

    CAS  PubMed  Google Scholar 

  83. Lopez-Novoa JM, Bernabeu C (2010) The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 299:H959–H974. doi:10.1152/ajpheart.01251.2009

    Article  CAS  PubMed  Google Scholar 

  84. Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265:8361–8364

    CAS  PubMed  Google Scholar 

  85. Llorca O, Trujillo A, Blanco FJ, Bernabeu C (2007) Structural model of human endoglin, a transmembrane receptor responsible for hereditary hemorrhagic telangiectasia. J Mol Biol 365:694–705. doi:10.1016/j.jmb.2006.10.015

    Article  CAS  PubMed  Google Scholar 

  86. Castonguay R, Werner ED, Matthews RG et al (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286:30034–30046. doi:10.1074/jbc.M111.260133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alt A, Miguel-Romero L, Donderis J et al (2012) Structural and functional insights into endoglin ligand recognition and binding. PLoS ONE 7:e29948. doi:10.1371/journal.pone.0029948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lastres P, Martin-Perez J, Langa C, Bernabeu C (1994) Phosphorylation of the human-transforming-growth-factor-beta-binding protein endoglin. Biochem J 301:765–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koleva RI, Conley BA, Romero D et al (2006) Endoglin structure and function: determinants of endoglin phosphorylation by transforming growth factor-beta receptors. J Biol Chem 281:25110–25123. doi:10.1074/jbc.M601288200

    Article  CAS  PubMed  Google Scholar 

  90. Bellon T, Corbi A, Lastres P et al (1993) Identification and expression of two forms of the human transforming growth factor-beta-binding protein endoglin with distinct cytoplasmic regions. Eur J Immunol 23:2340–2345. doi:10.1002/eji.1830230943

    Article  CAS  PubMed  Google Scholar 

  91. Perez-Gomez E, Eleno N, Lopez-Novoa JM et al (2005) Characterization of murine S-endoglin isoform and its effects on tumor development. Oncogene 24:4450–4461. doi:10.1038/sj.onc.1208644

    Article  CAS  PubMed  Google Scholar 

  92. Blanco FJ, Bernabeu C (2011) Alternative splicing factor or splicing factor-2 plays a key role in intron retention of the endoglin gene during endothelial senescence. Aging Cell 10:896–907. doi:10.1111/j.1474-9726.2011.00727.x

    Article  CAS  PubMed  Google Scholar 

  93. Blanco FJ, Bernabeu C (2012) The splicing factor SRSF1 as a marker for endothelial senescence. Front Physiol 3:54. doi:10.3389/fphys.2012.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Blanco FJ, Grande MT, Langa C et al (2008) S-endoglin expression is induced in senescent endothelial cells and contributes to vascular pathology. Circ Res 103:1383–1392. doi:10.1161/CIRCRESAHA.108.176552

    Article  CAS  PubMed  Google Scholar 

  95. Aristorena M, Blanco FJ, de Las Casas-Engel M et al (2014) Expression of endoglin isoforms in the myeloid lineage and their role during aging and macrophage polarization. J Cell Sci 127:2723–2735. doi:10.1242/jcs.143644

    Article  CAS  PubMed  Google Scholar 

  96. Velasco S, Alvarez-Munoz P, Pericacho M et al (2008) L- and S-endoglin differentially modulate TGFbeta1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts. J Cell Sci 121:913–919. doi:10.1242/jcs.023283

    Article  CAS  PubMed  Google Scholar 

  97. Hawinkels LJ, Kuiper P, Wiercinska E et al (2010) Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 70:4141–4150. doi:10.1158/0008-5472.CAN-09-4466

    Article  CAS  PubMed  Google Scholar 

  98. Valbuena-Diez AC, Blanco FJ, Oujo B et al (2012) Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation 126:2612–2624. doi:10.1161/CIRCULATIONAHA.112.101261

    Article  CAS  PubMed  Google Scholar 

  99. Malhotra R, Paskin-Flerlage S, Zamanian RT et al (2013) Circulating angiogenic modulatory factors predict survival and functional class in pulmonary arterial hypertension. Pulm Circ 3:369–380. doi:10.4103/2045-8932.110445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oujo B, Perez-Barriocanal F, Bernabeu C, Lopez-Novoa JM (2013) Membrane and soluble forms of endoglin in preeclampsia. Curr Mol Med 13:1345–1357

    Article  CAS  PubMed  Google Scholar 

  101. Fonsatti E, Del Vecchio L, Altomonte M et al (2001) Endoglin: an accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol 188:1–7. doi:10.1002/jcp.1095

    Article  CAS  PubMed  Google Scholar 

  102. Wang A, Rana S, Karumanchi SA (2009) Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology (Bethesda) 24:147–158. doi:10.1152/physiol.00043.2008

    Article  CAS  Google Scholar 

  103. Venkatesha S, Toporsian M, Lam C et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649. doi:10.1038/nm1429

    Article  CAS  PubMed  Google Scholar 

  104. Rius C, Smith JD, Almendro N et al (1998) Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood 92:4677–4690

    CAS  PubMed  Google Scholar 

  105. Graulich W, Nettelbeck DM, Fischer D et al (1999) Cell type specificity of the human endoglin promoter. Gene 227:55–62

    Article  CAS  PubMed  Google Scholar 

  106. Gougos A, St Jacques S, Greaves A et al (1992) Identification of distinct epitopes of endoglin, an RGD-containing glycoprotein of endothelial cells, leukemic cells, and syncytiotrophoblasts. Int Immunol 4:83–92

    Article  CAS  PubMed  Google Scholar 

  107. Lastres P, Bellon T, Cabanas C et al (1992) Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur J Immunol 22:393–397. doi:10.1002/eji.1830220216

    Article  CAS  PubMed  Google Scholar 

  108. Conley BA, Smith JD, Guerrero-Esteo M et al (2000) Endoglin, a TGF-beta receptor-associated protein, is expressed by smooth muscle cells in human atherosclerotic plaques. Atherosclerosis 153:323–335

    Article  CAS  PubMed  Google Scholar 

  109. Rivera LB, Brekken RA (2011) SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-beta1 activity. J Cell Biol 193:1305–1319. doi:10.1083/jcb.201011143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burrows FJ, Derbyshire EJ, Tazzari PL et al (1995) Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1:1623–1634

    CAS  PubMed  Google Scholar 

  111. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (1998) Upregulation of endoglin (CD105) expression during childhood brain tumor-related angiogenesis. Anti-angiogenic therapy. Anticancer Res 18:1485–1500

    CAS  PubMed  Google Scholar 

  112. Chakhachiro ZI, Zuo Z, Aladily TN et al (2013) CD105 (endoglin) is highly overexpressed in a subset of cases of acute myeloid leukemias. Am J Clin Pathol 140:370–378. doi:10.1309/AJCPG8XH7ZONAKXK

    Article  CAS  PubMed  Google Scholar 

  113. Miller DW, Graulich W, Karges B et al (1999) Elevated expression of endoglin, a component of the TGF-beta-receptor complex, correlates with proliferation of tumor endothelial cells. Int J Cancer 81:568–572

    Article  CAS  PubMed  Google Scholar 

  114. Munoz R, Arias Y, Ferreras JM et al (2012) Transient injury-dependent up-regulation of CD105 and its specific targeting with an anti-vascular anti-mouse endoglin-nigrin b immunotoxin. Med Chem 8:996–1002

    CAS  PubMed  Google Scholar 

  115. Ardelean DS, Yin M, Jerkic M et al (2014) Anti-VEGF therapy reduces intestinal inflammation in endoglin heterozygous mice subjected to experimental colitis. Angiogenesis 17:641–659. doi:10.1007/s10456-014-9421-x

    Article  CAS  PubMed  Google Scholar 

  116. Li DY, Sorensen LK, Brooke BS et al (1999) Defective angiogenesis in mice lacking endoglin. Science 284:1534–1537. doi:10.1126/science.284.5419.1534

    Article  CAS  PubMed  Google Scholar 

  117. Arthur HM, Ure J, Smith AJ et al (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217:42–53. doi:10.1006/dbio.1999.9534

    Article  CAS  PubMed  Google Scholar 

  118. Martin JS, Dickson MC, Cousins FM et al (1995) Analysis of homozygous TGF beta 1 null mouse embryos demonstrates defects in yolk sac vasculogenesis and hematopoiesis. Ann NY Acad Sci 752:300–308

    Article  CAS  PubMed  Google Scholar 

  119. Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302. doi:10.1006/dbio.1996.0259

    Article  CAS  PubMed  Google Scholar 

  120. Oh SP, Seki T, Goss KA et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shovlin CL (2010) Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 24:203–219. doi:10.1016/j.blre.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  122. McDonald J, Bayrak-Toydemir P, Pyeritz RE (2011) Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med 13:607–616. doi:10.1097/GIM.0b013e3182136d32

    Article  PubMed  Google Scholar 

  123. Choi EJ, Chen W, Jun K et al (2014) Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia. PLoS ONE 9:e88511. doi:10.1371/journal.pone.0088511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Tual-Chalot S, Oh SP, Arthur HM (2015) Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Front Genet 6:25. doi:10.3389/fgene.2015.00025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Bourdeau A, Dumont DJ, Letarte M (1999) A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 104:1343–1351. doi:10.1172/JCI8088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lebrin F, Srun S, Raymond K et al (2010) Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 16:420–428. doi:10.1038/nm.2131

    Article  CAS  PubMed  Google Scholar 

  127. Pece-Barbara N, Vera S, Kathirkamathamby K et al (2005) Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem 280:27800–27808. doi:10.1074/jbc.M503471200

    Article  CAS  PubMed  Google Scholar 

  128. Pan CC, Bloodworth JC, Mythreye K, Lee NY (2012) Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation. Biochem Biophys Res Commun 424:620–623. doi:10.1016/j.bbrc.2012.06.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pan CC, Kumar S, Shah N et al (2014) Src-mediated post-translational regulation of endoglin stability and function is critical for angiogenesis. J Biol Chem 289:25486–25496. doi:10.1074/jbc.M114.578609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li C, Hampson IN, Hampson L et al (2000) CD105 antagonizes the inhibitory signaling of transforming growth factor beta1 on human vascular endothelial cells. FASEB J 14:55–64

    CAS  PubMed  Google Scholar 

  131. Bernabeu C, Lopez-Novoa JM, Quintanilla M (2009) The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta 1792:954–973. doi:10.1016/j.bbadis.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  132. Lastres P, Letamendia A, Zhang H et al (1996) Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol 133:1109–1121

    Article  CAS  PubMed  Google Scholar 

  133. Gregory AL, Xu G, Sotov V, Letarte M (2014) Review: the enigmatic role of endoglin in the placenta. Placenta 35(Suppl):S93–S99. doi:10.1016/j.placenta.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  134. Meurer SK, Alsamman M, Scholten D, Weiskirchen R (2014) Endoglin in liver fibrogenesis: bridging basic science and clinical practice. World J Biol Chem 5:180–203. doi:10.4331/wjbc.v5.i2.180

    PubMed  PubMed Central  Google Scholar 

  135. Munoz-Felix JM, Oujo B, Lopez-Novoa JM (2014) The role of endoglin in kidney fibrosis. Expert Rev Mol Med 16:e18. doi:10.1017/erm.2014.20

    Article  PubMed  CAS  Google Scholar 

  136. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652. doi:10.1161/CIRCRESAHA.107.167171

    Article  CAS  PubMed  Google Scholar 

  137. Pepper MS, Vassalli JD, Orci L, Montesano R (1993) Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res 204:356–363. doi:10.1006/excr.1993.1043

    Article  CAS  PubMed  Google Scholar 

  138. Letamendia A, Lastres P, Botella LM et al (1998) Role of endoglin in cellular responses to transforming growth factor-beta. A comparative study with betaglycan. J Biol Chem 273:33011–33019

    Article  CAS  PubMed  Google Scholar 

  139. Lebrin F, Goumans MJ, Jonker L et al (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028. doi:10.1038/sj.emboj.7600386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Finkenzeller G, Hager S, Stark GB (2012) Effects of bone morphogenetic protein 2 on human umbilical vein endothelial cells. Microvasc Res 84:81–85. doi:10.1016/j.mvr.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  141. Bai Y, Leng Y, Yin G et al (2014) Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo. Cell Tissue Res 356:109–121. doi:10.1007/s00441-013-1781-9

    Article  CAS  PubMed  Google Scholar 

  142. David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20:203–212. doi:10.1016/j.cytogfr.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  143. Cai J, Pardali E, Sanchez-Duffhues G, ten Dijke P (2012) BMP signaling in vascular diseases. FEBS Lett 586:1993–2002. doi:10.1016/j.febslet.2012.04.030

    Article  CAS  PubMed  Google Scholar 

  144. David L, Mallet C, Mazerbourg S et al (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109:1953–1961. doi:10.1182/blood-2006-07-034124

    Article  CAS  PubMed  Google Scholar 

  145. Scharpfenecker M, van Dinther M, Liu Z et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972. doi:10.1242/jcs.002949

    Article  CAS  PubMed  Google Scholar 

  146. David L, Mallet C, Keramidas M et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102:914–922. doi:10.1161/CIRCRESAHA.107.165530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Suzuki Y, Ohga N, Morishita Y et al (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123:1684–1692. doi:10.1242/jcs.061556

    Article  CAS  PubMed  Google Scholar 

  148. van Meeteren LA, Thorikay M, Bergqvist S et al (2012) Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 287:18551–18561. doi:10.1074/jbc.M111.338103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274:584–594

    Article  CAS  PubMed  Google Scholar 

  150. Nolan-Stevaux O, Zhong W, Culp S et al (2012) Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS ONE 7:e50920. doi:10.1371/journal.pone.0050920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jonker L (2014) TGF-beta & BMP receptors endoglin and ALK1: overview of their functional role and status as antiangiogenic targets. Microcirculation 21:93–103. doi:10.1111/micc.12099

    Article  CAS  PubMed  Google Scholar 

  152. Sanchez-Elsner T, Botella LM, Velasco B et al (2002) Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem 277:43799–43808. doi:10.1074/jbc.M207160200

    Article  CAS  PubMed  Google Scholar 

  153. Botella LM, Sanchez-Elsner T, Rius C et al (2001) Identification of a critical Sp1 site within the endoglin promoter and its involvement in the transforming growth factor-beta stimulation. J Biol Chem 276:34486–34494. doi:10.1074/jbc.M011611200

    Article  CAS  PubMed  Google Scholar 

  154. Li C, Issa R, Kumar P et al (2003) CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci 116:2677–2685. doi:10.1242/jcs.00470

    Article  CAS  PubMed  Google Scholar 

  155. Fujita D, Tanabe A, Sekijima T et al (2010) Role of extracellular signal-regulated kinase and AKT cascades in regulating hypoxia-induced angiogenic factors produced by a trophoblast-derived cell line. J Endocrinol 206:131–140. doi:10.1677/JOE-10-0027

    Article  CAS  PubMed  Google Scholar 

  156. Hung SP, Yang MH, Tseng KF, Lee OK (2013) Hypoxia-Induced Secretion of TGF-beta1 in Mesenchymal Stem Cell Promotes Breast Cancer Cell Progression. Cell Transpl 22:1869–1882. doi:10.3727/096368912X657954

    Article  Google Scholar 

  157. Basu RK, Hubchak S, Hayashida T et al (2011) Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Ren Physiol 300:F898–F905. doi:10.1152/ajprenal.00335.2010

    Article  CAS  Google Scholar 

  158. Zhu Y, Sun Y, Xie L et al (2003) Hypoxic induction of endoglin via mitogen-activated protein kinases in mouse brain microvascular endothelial cells. Stroke 34:2483–2488. doi:10.1161/01.STR.0000088644.60368.ED

    Article  CAS  PubMed  Google Scholar 

  159. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139. doi:10.1172/JCI119868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Olson N, van der Vliet A (2011) Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 25:125–137. doi:10.1016/j.niox.2010.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jerkic M, Rivas-Elena JV, Prieto M et al (2004) Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J 18:609–611. doi:10.1096/fj.03-0197fje

    CAS  PubMed  Google Scholar 

  162. Santibanez JF, Letamendia A, Perez-Barriocanal F et al (2007) Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-beta signaling. J Cell Physiol 210:456–468. doi:10.1002/jcp.20878

    Article  CAS  PubMed  Google Scholar 

  163. Zucco L, Zhang Q, Kuliszewski MA et al (2014) Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia. PLoS ONE 9:e89927. doi:10.1371/journal.pone.0089927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Toporsian M, Gros R, Kabir MG et al (2005) A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ Res 96:684–692. doi:10.1161/01.RES.0000159936.38601.22

    Article  CAS  PubMed  Google Scholar 

  165. Sadick H, Hage J, Goessler U et al (2008) Does the genotype of HHT patients with mutations of the ENG and ACVRL1 gene correlate to different expression levels of the angiogenic factor VEGF? Int J Mol Med 22:575–580

    CAS  PubMed  Google Scholar 

  166. Botella LM, Albinana V, Ojeda-Fernandez L et al (2015) Research on potential biomarkers in hereditary hemorrhagic telangiectasia. Front Genet 6:115. doi:10.3389/fgene.2015.00115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Liu Z, Lebrin F, Maring JA et al (2014) ENDOGLIN is dispensable for vasculogenesis, but required for vascular endothelial growth factor-induced angiogenesis. PLoS ONE 9:e86273. doi:10.1371/journal.pone.0086273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Bockhorn M, Tsuzuki Y, Xu L et al (2003) Differential vascular and transcriptional responses to anti-vascular endothelial growth factor antibody in orthotopic human pancreatic cancer xenografts. Clin Cancer Res 9:4221–4226

    CAS  PubMed  Google Scholar 

  169. Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201. doi:10.1038/nm1101-1194

    Article  CAS  PubMed  Google Scholar 

  170. Yoon CH, Hur J, Park KW et al (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627. doi:10.1161/CIRCULATIONAHA.104.503433

    Article  PubMed  Google Scholar 

  171. Fuchs S, Hermanns MI, Kirkpatrick CJ (2006) Retention of a differentiated endothelial phenotype by outgrowth endothelial cells isolated from human peripheral blood and expanded in long-term cultures. Cell Tissue Res 326:79–92. doi:10.1007/s00441-006-0222-4

    Article  PubMed  Google Scholar 

  172. Medina RJ, O’Neill CL, Sweeney M et al (2010) Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics 3:18. doi:10.1186/1755-8794-3-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Martin-Ramirez J, Hofman M, van den Biggelaar M et al (2012) Establishment of outgrowth endothelial cells from peripheral blood. Nat Protoc 7:1709–1715. doi:10.1038/nprot.2012.093

    Article  CAS  PubMed  Google Scholar 

  174. Zengin E, Chalajour F, Gehling UM et al (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551. doi:10.1242/dev.02315

    Article  CAS  PubMed  Google Scholar 

  175. Reyes M, Dudek A, Jahagirdar B et al (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346. doi:10.1172/JCI14327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Goon PK, Lip GY, Boos CJ et al (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88. doi:10.1593/neo.05592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gill M, Dias S, Hattori K et al (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88:167–174

    Article  CAS  PubMed  Google Scholar 

  178. Jourde-Chiche N, Dou L, Sabatier F et al (2009) Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients. J Thromb Haemost 7:1576–1584. doi:10.1111/j.1538-7836.2009.03540.x

    Article  CAS  PubMed  Google Scholar 

  179. Foresta C, Schipilliti M, De Toni L et al (2011) Blood levels, apoptosis, and homing of the endothelial progenitor cells after skin burns and escharectomy. J Trauma 70:459–465. doi:10.1097/TA.0b013e3181fcf83c

    Article  PubMed  Google Scholar 

  180. Paczkowska E, Roginska D, Pius-Sadowska E et al (2014) Evidence for proangiogenic cellular and humoral systemic response in patients with acute onset of spinal cord injury. J Spinal Cord Med 38:729–744. doi:10.1179/2045772314Y.0000000227

    Article  PubMed  Google Scholar 

  181. Pelosi E, Castelli G, Martin-Padura I et al (2012) Human haemato-endothelial precursors: cord blood CD34 + cells produce haemogenic endothelium. PLoS ONE 7:e51109. doi:10.1371/journal.pone.0051109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bagley RG, Weber W, Rouleau C, Teicher BA (2005) Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy. Cancer Res 65:9741–9750. doi:10.1158/0008-5472.CAN-04-4337

    Article  CAS  PubMed  Google Scholar 

  183. Sorensen LK, Brooke BS, Li DY, Urness LD (2003) Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFbeta coreceptor. Dev Biol 261:235–250

    Article  CAS  PubMed  Google Scholar 

  184. Fernandez LA, Sanz-Rodriguez F, Zarrabeitia R et al (2005) Blood outgrowth endothelial cells from Hereditary Haemorrhagic Telangiectasia patients reveal abnormalities compatible with vascular lesions. Cardiovasc Res 68:235–248. doi:10.1016/j.cardiores.2005.06.009

    Article  CAS  Google Scholar 

  185. Fernandez LA, Garrido-Martin EM, Sanz-Rodriguez F et al (2007) Gene expression fingerprinting for human hereditary hemorrhagic telangiectasia. Hum Mol Genet 16:1515–1533. doi:10.1093/hmg/ddm069

    Article  CAS  Google Scholar 

  186. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437:497–504. doi:10.1038/nature03987

    Article  CAS  PubMed  Google Scholar 

  187. Persson AB, Buschmann IR (2011) Vascular growth in health and disease. Front Mol Neurosci 4:14. doi:10.3389/fnmol.2011.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Jerkic M, Peter M, Ardelean D et al (2010) Dextran sulfate sodium leads to chronic colitis and pathological angiogenesis in Endoglin heterozygous mice. Inflamm Bowel Dis 16:1859–1870. doi:10.1002/ibd.21288

    Article  PubMed  PubMed Central  Google Scholar 

  189. Jerkic M, Letarte M (2015) Increased endothelial cell permeability in endoglin-deficient cells. FASEB J 29:3678–3688. doi:10.1096/fj.14-269258

    Article  CAS  PubMed  Google Scholar 

  190. Lampugnani MG, Orsenigo F, Gagliani MC et al (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604. doi:10.1083/jcb.200602080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234. doi:10.1038/ncb1486

    Article  CAS  PubMed  Google Scholar 

  192. Goumans MJ, Valdimarsdottir G, Itoh S et al (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753. doi:10.1093/emboj/21.7.1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rudini N, Felici A, Giampietro C et al (2008) VE-cadherin is a critical endothelial regulator of TGF-beta signalling. EMBO J 27:993–1004. doi:10.1038/emboj.2008.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu Y, Jovanovic B, Pins M et al (2002) Over expression of endoglin in human prostate cancer suppresses cell detachment, migration and invasion. Oncogene 21:8272–8281. doi:10.1038/sj.onc.1206117

    Article  CAS  PubMed  Google Scholar 

  195. Conley BA, Koleva R, Smith JD et al (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279:27440–27449. doi:10.1074/jbc.M312561200

    Article  CAS  PubMed  Google Scholar 

  196. Sanz-Rodriguez F, Guerrero-Esteo M, Botella LM et al (2004) Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem 279:32858–32868. doi:10.1074/jbc.M400843200

    Article  CAS  PubMed  Google Scholar 

  197. Liu Y, Tian H, Blobe GC et al (2014) Effects of the combination of TRC105 and bevacizumab on endothelial cell biology. Invest New Drugs 32:851–859. doi:10.1007/s10637-014-0129-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ray BN, Lee NY, How T, Blobe GC (2010) ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis 31:435–441. doi:10.1093/carcin/bgp327

    Article  CAS  PubMed  Google Scholar 

  199. Lebrin F, Deckers M, Bertolino P, Ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65:599–608. doi:10.1016/j.cardiores.2004.10.036

    Article  CAS  PubMed  Google Scholar 

  200. Goumans MJ, Valdimarsdottir G, Itoh S et al (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12:817–828

    Article  CAS  PubMed  Google Scholar 

  201. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127. doi:10.1038/cr.2008.326

    Article  CAS  PubMed  Google Scholar 

  202. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567. doi:10.1016/j.tcb.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  203. Mahmoud M, Upton PD, Arthur HM (2011) Angiogenesis regulation by TGFbeta signalling: clues from an inherited vascular disease. Biochem Soc Trans 39:1659–1666. doi:10.1042/BST20110664

    Article  CAS  PubMed  Google Scholar 

  204. Walshe TE, Saint-Geniez M, Maharaj AS et al (2009) TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE 4:e5149. doi:10.1371/journal.pone.0005149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Geng L, Chaudhuri A, Talmon G et al (2013) TGF-Beta suppresses VEGFA-mediated angiogenesis in colon cancer metastasis. PLoS ONE 8:e59918. doi:10.1371/journal.pone.0059918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Riedel K, Riedel F, Goessler UR et al (2007) Tgf-beta antisense therapy increases angiogenic potential in human keratinocytes in vitro. Arch Med Res 38:45–51. doi:10.1016/j.arcmed.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  207. Tian H, Mythreye K, Golzio C et al (2012) Endoglin mediates fibronectin/alpha5beta1 integrin and TGF-beta pathway crosstalk in endothelial cells. EMBO J 31:3885–3900. doi:10.1038/emboj.2012.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C (2002) Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 277:29197–29209. doi:10.1074/jbc.M111991200

    Article  CAS  PubMed  Google Scholar 

  209. Lee NY, Blobe GC (2007) The interaction of endoglin with beta-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem 282:21507–21517. doi:10.1074/jbc.M700176200

    Article  CAS  PubMed  Google Scholar 

  210. Lee NY, Golzio C, Gatza CE et al (2012) Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis. Mol Biol Cell 23:2412–2423. doi:10.1091/mbc.E11-12-0993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. González-Núñez M, Muñoz-Félix JM, López-Novoa JM (2013) The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim Biophys Acta 1832:1492–1510. doi:10.1016/j.bbadis.2013.05.016

    Article  PubMed  CAS  Google Scholar 

  212. Goumans MJ, Lebrin F, Valdimarsdottir G (2003) Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13:301–307

    Article  CAS  PubMed  Google Scholar 

  213. Quintanilla M, Ramirez JR, Perez-Gomez E et al (2003) Expression of the TGF-beta coreceptor endoglin in epidermal keratinocytes and its dual role in multistage mouse skin carcinogenesis. Oncogene 22:5976–5985. doi:10.1038/sj.onc.1206841

    Article  CAS  PubMed  Google Scholar 

  214. Goldberg PL, MacNaughton DE, Clements RT et al (2002) p38 MAPK activation by TGF-beta1 increases MLC phosphorylation and endothelial monolayer permeability. Am J Physiol Lung Cell Mol Physiol 282:L146–L154

    CAS  PubMed  Google Scholar 

  215. Birukova AA, Birukov KG, Gorshkov B et al (2005) MAP kinases in lung endothelial permeability induced by microtubule disassembly. Am J Physiol Lung Cell Mol Physiol 289:L75–L84. doi:10.1152/ajplung.00447.2004

    Article  CAS  PubMed  Google Scholar 

  216. Santibanez JF, Pérez-Gómez E, Fernandez-L A et al (2010) The TGF-beta co-receptor endoglin modulates the expression and transforming potential of H-Ras. Carcinogenesis 31:2145–2154. doi:10.1093/carcin/bgq199

    Article  CAS  PubMed  Google Scholar 

  217. Valluru M, Staton CA, Reed MW, Brown NJ (2011) Transforming growth factor-beta and endoglin signaling orchestrate wound healing. Front Physiol 2:89. doi:10.3389/fphys.2011.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Adam PJ, Clesham GJ, Weissberg PL (1998) Expression of endoglin mRNA and protein in human vascular smooth muscle cells. Biochem Biophys Res Commun 247:33–37. doi:10.1006/bbrc.1998.8734

    Article  CAS  PubMed  Google Scholar 

  219. Matsubara S, Bourdeau A, terBrugge KG et al (2000) Analysis of endoglin expression in normal brain tissue and in cerebral arteriovenous malformations. Stroke 31:2653–2660

    Article  CAS  PubMed  Google Scholar 

  220. Mancini ML, Terzic A, Conley BA et al (2009) Endoglin plays distinct roles in vascular smooth muscle cell recruitment and regulation of arteriovenous identity during angiogenesis. Dev Dyn 238:2479–2493. doi:10.1002/dvdy.22066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Egorova AD, Khedoe PPSJ, Goumans M-JTH et al (2011) Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ Res 108:1093–1101. doi:10.1161/CIRCRESAHA.110.231860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Boroujerdi A, Welser-Alves JV, Tigges U, Milner R (2012) Chronic cerebral hypoxia promotes arteriogenic remodeling events that can be identified by reduced endoglin (CD105) expression and a switch in beta1 integrins. J Cereb Blood Flow Metab 32:1820–1830. doi:10.1038/jcbfm.2012.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Milner R, Campbell IL (2002) Developmental regulation of beta1 integrins during angiogenesis in the central nervous system. Mol Cell Neurosci 20:616–626

    Article  CAS  PubMed  Google Scholar 

  224. Carvalho RL, Jonker L, Goumans MJ et al (2004) Defective paracrine signalling by TGFbeta in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development 131:6237–6247. doi:10.1242/dev.01529

    Article  CAS  PubMed  Google Scholar 

  225. Orlova VV, Liu Z, Goumans MJ, ten Dijke P (2011) Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways. Histol Histopathol 26:1219–1230

    CAS  PubMed  Google Scholar 

  226. Cai WJ, Li MB, Wu X et al (2009) Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol Cell Biochem 322:161–169. doi:10.1007/s11010-008-9953-8

    Article  CAS  PubMed  Google Scholar 

  227. Liu Z, Kobayashi K, van Dinther M et al (2009) VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci 122:3294–3302. doi:10.1242/jcs.048942

    Article  CAS  PubMed  Google Scholar 

  228. Li L, Welser-Alves J, van der Flier A et al (2012) An angiogenic role for the alpha5beta1 integrin in promoting endothelial cell proliferation during cerebral hypoxia. Exp Neurol 237:46–54. doi:10.1016/j.expneurol.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Herter J, Zarbock A (2013) Integrin Regulation during Leukocyte Recruitment. J Immunol 190:4451–4457. doi:10.4049/jimmunol.1203179

    Article  CAS  PubMed  Google Scholar 

  230. Muenzner P, Bachmann V, Zimmermann W et al (2010) Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 329:1197–1201. doi:10.1126/science.1190892

    Article  CAS  PubMed  Google Scholar 

  231. Sanz-Rodriguez F, Fernandez-L A, Zarrabeitia R et al (2004) Mutation analysis in Spanish patients with hereditary hemorrhagic telangiectasia: deficient endoglin up-regulation in activated monocytes. Clin Chem 50:2003–2011. doi:10.1373/clinchem.2004.035287

    Article  CAS  PubMed  Google Scholar 

  232. Guilhem A, Malcus C, Clarivet B et al (2013) Immunological abnormalities associated with hereditary haemorrhagic telangiectasia. J Intern Med 274:351–362. doi:10.1111/joim.12098

    Article  CAS  PubMed  Google Scholar 

  233. Post S, Smits AM, van den Broek AJ et al (2010) Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovasc Res 85:494–502. doi:10.1093/cvr/cvp313

    Article  CAS  PubMed  Google Scholar 

  234. Dingenouts CKE, Goumans M-J, Bakker W (2015) Mononuclear cells and vascular repair in HHT. Front Genet 6:114. doi:10.3389/fgene.2015.00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Shen F, Degos V, Chu P-L et al (2014) Endoglin deficiency impairs stroke recovery. Stroke 45:2101–2106. doi:10.1161/STROKEAHA.114.005115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhang R, Han Z, Degos V et al (2016) Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation. Angiogenesis 19:451–461. doi:10.1007/s10456-016-9519-4

    Article  CAS  PubMed  Google Scholar 

  237. Rossi E, Lopez-Novoa JM, Bernabeu C (2014) Endoglin involvement in integrin-mediated cell adhesion as a putative pathogenic mechanism in hereditary hemorrhagic telangiectasia type 1 (HHT1). Front Genet 5:457. doi:10.3389/fgene.2014.00457

    PubMed  Google Scholar 

  238. Cirulli A, Loria MP, Dambra P et al (2006) Patients with Hereditary Hemorrhagic Telangectasia (HHT) exhibit a deficit of polymorphonuclear cell and monocyte oxidative burst and phagocytosis: a possible correlation with altered adaptive immune responsiveness in HHT. Curr Pharm Des 12:1209–1215

    Article  CAS  PubMed  Google Scholar 

  239. Ojeda-Fernández L, Recio-Poveda L, Aristorena M et al (2016) Mice lacking endoglin in macrophages show an impaired immune response. PLoS Genet 12:e1005935. doi:10.1371/journal.pgen.1005935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Blanco FJ, Ojeda-Fernandez L, Aristorena M et al (2015) Genome-wide transcriptional and functional analysis of endoglin isoforms in the human promonocytic cell line U937. J Cell Physiol 230:947–958. doi:10.1002/jcp.24827

    Article  CAS  PubMed  Google Scholar 

  241. Costamagna D, Quattrocelli M, van Tienen F et al (2015) Smad 1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 8:73–87. doi:10.1093/jmcb/mjv059

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rissanen TT, Vajanto I, Ylä-Herttuala S (2001) Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb—on the way to the clinic. Eur J Clin Invest 31:651–666

    Article  CAS  PubMed  Google Scholar 

  243. Toporsian M, Govindaraju K, Nagi M et al (2000) Downregulation of endothelial nitric oxide synthase in rat aorta after prolonged hypoxia in vivo. Circ Res 86:671–675

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. López-Novoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez-Gómez, E., Pericacho, M., Ollauri-Ibáñez, C. et al. The role of endoglin in post-ischemic revascularization. Angiogenesis 20, 1–24 (2017). https://doi.org/10.1007/s10456-016-9535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9535-4

Keywords

Navigation