Skip to main content

Advertisement

Log in

Ultrasound and color Doppler applications in chronic kidney disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) includes all clinical features and complications during the progression of various kidney conditions towards end-stage renal disease (ESRD). These conditions include immune and inflammatory disease such as: primary and hepatitis C virus (HCV)-related glomerulonephritis; infectious disease such as pyelonephritis with or without reflux and tuberculosis; vascular disease such as chronic ischemic nephropathy; hereditary and congenital disease such as polycystic disease and congenital cystic dysplasia; metabolic disease including diabetes and hyperuricemia; and systemic disease (collagen disease, vasculitis, myeloma). During the progression of CKD, ultrasound imaging and color Doppler imaging (US–CDI) can differentiate the etiology of the renal damage in only 50–70% of cases. Indeed, the end-stage kidney appears shrunken, reduced in volume (Ø < 9 cm), unstructured, amorphous, and with acquired cystic degeneration (small and multiple cysts involving the cortex and medulla) or nephrocalcinosis, but there are rare exceptions, such as polycystic kidney disease, diabetic nephropathy, and secondary inflammatory nephropathies. The main difficulties in the differential diagnosis are encountered in multifactorial CKD, which is commonly presented to the nephrologist at stage 4–5, when the kidney is shrunken, unstructured and amorphous. As in acute renal injury and despite the lack of sensitivity, US–CDI is essential for assessing the progression of renal damage and related complications, and for evaluating all conditions that increase the risk of CKD, such as lithiasis, recurrent urinary tract infections, vesicoureteral reflux, polycystic kidney disease and obstructive nephropathy. The timing and frequency of ultrasound scans in CKD patients should be evaluated case by case. In this review, we will consider the morpho-functional features of the kidney in all nephropathies that may lead to progressive CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

American Journal of Kidney Diseases, Vol. 39/2, National Kidney Foundation, KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, classification, and stratification/Part 2. Background, pages No., S32–S36, Copyright (2002), with permission from Elsevier

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. National Kidney Foundation, K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease (2002) Evaluation, classification, and stratification. Am J Kidney Dis 39(Suppl.1):S1–S266

    Google Scholar 

  2. Levey AS, Eckardt KU, Tsukamoto Y et al (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67:2089–2100

    Article  Google Scholar 

  3. Go AS, Chertow GM, Fan D, McCulloch F, Hsu CY (2004) Chronic kidney disease and risks of death, cardiovascular events and hospitalizations. N Engl J Med 351:1296–1305

    Article  CAS  Google Scholar 

  4. Meola M, Samoni S, Petrucci I (2016) Imaging in chronic kidney disease. Contrib Nephrol 188:69–80

    Article  Google Scholar 

  5. Buturović-Ponikvar J, Visnar-Perovic A (2003) Ultrasonography in chronic renal failure. Eur J Radiol 46:115–122

    Article  Google Scholar 

  6. Kooiman J, Pasha SM, Zondag W et al (2012) Meta-analysis: serum creatinine changes following contrast enhanced CT imaging. Eur J Radiol 81:2554–2561

    Article  Google Scholar 

  7. Solomon RJ, Mehran R, Natarajan MK et al (2009) Contrast-induced nephropathy and long-term adverse events: cause and effect? Clin J Am SocNephrol 4:1162–1169

    Article  Google Scholar 

  8. Ebrahimi B, Textor SC, Lerman LO (2014) Renal relevant radiology: renal functional magnetic resonance imaging. Clin J Am Soc Nephrol 9:395–405

    Article  Google Scholar 

  9. Granata A, Zanoli L, Insalaco M et al (2015) Contrast-enhanced ultrasound (CEUS) in nephrology: has the time come for its widespread use? Clin Exp Nephrol 19:606–15

    Article  Google Scholar 

  10. Durand E, Chaumet-Riffaud P, Grenier N (2011) Functional renal imaging: new trends in radiology and nuclear medicine. Semin Nucl Med 41:61–72

    Article  Google Scholar 

  11. Lucisano G, Comi N, Pelagi E, Cianfrone P, Fuiano L, Fuiano G (2015) Can renal sonography be a reliable diagnostic tool in the assessment of chronic kidney disease? J Ultrasound Med 34:299–306

    Article  Google Scholar 

  12. American College of Radiology Website (Revised 2007) ACR practice guideline for the performance of an ultrasound examination of the abdomen and/or retro-peritoneum (in collaboration with the American Institute of Ultrasound in Medicine AIUM). http://www.acr.org/guidelines. Accessed 14 Apr 2010

  13. Emamian SA, Nielsen MB, Pedersen JF, Ytte L (1993) Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. AJR Am J Roentgenol 160:83–86

    Article  CAS  Google Scholar 

  14. Jones TB, Riddick LR, Harpen MD, Dubuisson RL, Samuels D (1983) Ultrasonographic determination of renal mass and renal volume. J Ultrasound Med 2:151–154

    Article  CAS  Google Scholar 

  15. Moghazi S, Jones E, Schroepple J et al (2005) Correlation of renal histopathology with sonographic findings. Kidney Int 67:1515–1520

    Article  Google Scholar 

  16. Beland MD, Walle NL, Machan JT, Cronan JJ (2010) Renal cortical thickness measured at ultrasound: is it better than renal length as an indicator of renal function in chronic kidney disease? AJR Am J Roentgenol 195:W146–W149

    Article  Google Scholar 

  17. Khati NJ, Hill MC, Kimmel PL (2005) The role of ultrasound in renal insufficiency: the essentials. Ultrasound Q 21:227–244

    Article  Google Scholar 

  18. Bude RO, Rubin JM (1999) Relationship between the resistive index and vascular compliance and resistance. Radiology 211:411–417

    Article  CAS  Google Scholar 

  19. Ikee R, Kobayshi S, Hemmi N et al (2005) Correlation between the resistive index by Doppler ultrasound and kidney function and histology. Am J Kidney Dis 46:603–609

    Article  Google Scholar 

  20. Boddi M, Cecioni I, Poggesi L et al (2006) Renal resistive index early detects chronic tubulointerstitial nephropathy in normo- and hypertensive patients. Am J Nephrol 26:16–21

    Article  Google Scholar 

  21. Parolini C, Noce A, Staffolani E, Giarrizzo GF, Costanzi S, Splendiani G (2009) Renal resistive index and longterm outcome in chronic nephropathies. Radiology 252:888–896

    Article  Google Scholar 

  22. Sugiura T, Wada A (2009) Resistive index predicts renal prognosis in chronic kidney disease. Nephrol Dial Transplant 24:2780–2785

    Article  Google Scholar 

  23. Radermacher J, Mengel M, Ellis S et al (2003) The renal arterial resistance index and renal allograft survival. N Engl J Med 349:115–124

    Article  Google Scholar 

  24. Radermacher J, Chavan A, Bleck J et al (2001) Use of Doppler ultrasonography to predict the outcome of therapy for renal artery stenosis. N Engl J Med 344:410–417

    Article  CAS  Google Scholar 

  25. Platt JF, Rubin JM, Ellis JH et al (1989) Duplex Doppler US of the kidney: differentiation of obstructive from non obstructive dilatation. Radiology 171:515–517

    Article  CAS  Google Scholar 

  26. Watanabe S, Okura T, Kurata M et al (2006) Valsartan reduces serum cystatin C and the renal vascular resistance inpatients with essential hypertension. Clin Exp Hypertens 28:451–461

    Article  CAS  Google Scholar 

  27. Leoncini G, Martinoli C, Viazzi F et al (2002) Changes in renal resistive index and urinary albumin excretion in hypertensive patients under long-term treatment with lisinopril and nifedipine GITS. Nephron 90:169–173

    Article  CAS  Google Scholar 

  28. Quaia E, Bertolotto M (2002) Renal parenchymal diseases: is characterization feasible with ultrasound? EurRadiol 12:2006–20

    Google Scholar 

  29. Christiansen JS, Gamelgaard J, Frandsen M, Parving HH (1981) Increased kidney size, glomerular filtration rate and renal plasma flow in short term insulin dependent diabetics. Diabetologia 20:451–456

    CAS  PubMed  Google Scholar 

  30. Ishimura E, Nishizawa Y, Kawagishi T et al (1997) Intrarenal hemodynamic abnormalities in diabetic nephropathy measured by duplex Doppler sonography. Kidney Int 51:1920–1927

    Article  CAS  Google Scholar 

  31. Okta Y, Fujii K, Hisatomi A et al (2005) Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. J Hypertens 23:1905–1911

    Article  Google Scholar 

  32. Eknoyan G, McDonald MA, Appel D, Truong LD (1990) Chronic tubule-interstitial nephritis: correlation between structural and functional findings. Kidney Int 38:736–743

    Article  CAS  Google Scholar 

  33. Meola M, Samoni S, Petrucci I (2016) Clinical scenarios in chronic kidney disease: chronic tubulointerstitial diseases. Contrib Nephrol 188:108–119

    Article  Google Scholar 

  34. Dugo M, Mangino M, Meola M, Petrucci I et al (2017) Ultrasound findings of BK polyomavirus-associated nephropathy in renal transplant patients. J Nephrol 30:449–453

    Article  Google Scholar 

  35. Mattoo TK2 (2011) Vesicoureteral reflux and reflux nephropathy. Adv Chronic Kidney Dis 18:348–354

    Article  Google Scholar 

  36. Bailey RR, Lynn KL (1984) End-stage reflux nephropathy. Contrib Nephrol 39:10–21

    Google Scholar 

  37. Kraus RA, Gaisie G, Young LW (1990) Increased renal parenchymal echogenicity: causes in pediatric. Radiographics 10:1009–1018

    Article  CAS  Google Scholar 

  38. Becker JA (1988) Renal tuberculosis. Urol Radiol 10:25–30

    Article  CAS  Google Scholar 

  39. XuefangRui X-D, Li SongliangCai et al (2008) Ultrasonographic diagnosis and typing of renal tuberculosis. Int J Urol 15:135–139

    Article  Google Scholar 

  40. Puech P, Lagard D, Leroy C, Dracon M, Diserte J, Lemaitre L (2004) Imaging in urinary tract infection. J Radiol 85:220–240

    Article  CAS  Google Scholar 

  41. Talner L, O’Reilly P, Roy C et al (2000) Urinary obstruction. In: Pollack HM, McClennan BL (eds) Clinical uropathy, 2nd edn, Vol 2. WB Saunders, Philadelphia, pp 1846–966

    Google Scholar 

  42. Walsh PC, Retnik AB, Vaughan ED, Wein AJ (1998) Pathophysiology of urinary tract obstruction, Campbell’s urology, 7th edn. WB Saunders, Philadelphia, pp 343–360

    Google Scholar 

  43. deBessa J Jr, Dénes FT, Chammas MC, Cerri L et al (2008) Diagnostic accuracy of color Doppler sonographic study of the ureteric jets in evaluation of hydronephrosis. J Pediatr Urol 4:113–117

    Article  Google Scholar 

  44. Rawashdeh YF, Djurhuus JC, Mortensen J, Hørlyck A, Frokiaer J (2001) The intrarenal resistive index as a pathophysiological marker of obstructive uropathy. J Urol 165:1397–1404

    Article  CAS  Google Scholar 

  45. Varma G, Nair N, Salim A et al (2009) Investigations for recognizing urinary stone. Urol Res 37:349–352

    Article  Google Scholar 

  46. European Association of Urology (2017) European Association of Urology guidelines on Urolithiasis. European Association of Urology, Milan, pp 270–279

    Google Scholar 

  47. Pepe P, Motta L, Pennisi M, Aragona F (2005) Functional evaluation of the urinary tract by color-Doppler ultrasonography (CDU) in 100 patients with renal colic. Eur J Radiol 53:131–135

    Article  Google Scholar 

  48. Kamaya A, Tuthill T, Rubin JM (2003) Twinkling artifact on color Doppler sonography: dependence on machine parameters and underlying cause. AJR Am J Roentgenol 180:215–222

    Article  Google Scholar 

  49. USRDS (2017) USRDS annual data report. USRDS, Ann Arbor. http://www.sin-ridt.org/web/eventi/RIDT/verbali.cfm

  50. Main J (2000) Atheromatous renal artery stenosis rarely causes renal failure. Nephrol Dial Transplant 15:924–925. http://ridt.sinitaly.org/2017/10/09/report-2015/

    Article  CAS  Google Scholar 

  51. Meola M (2015) Le malattievascolari del rene. Meola M (ed) EcografiaClinica in Nefrologia, Cap 25. Eureka Editore, Lucca, pp 971–1036

    Google Scholar 

  52. Wheatley K, Ives N, Gray R et al (2009) Revascularization versus medical therapy for renal-artery stenosis. ASTRAL Investigators. N Engl J Med 361:1953–1962

    Article  Google Scholar 

  53. Cooper CJ, Murphy TP, Matsumoto A et al (2006) Stent revascularization for the prevention of cardiovascular and renal events among patients with renal artery stenosis and systolic hypertension: rationale and design of the CORAL trial. Am Heart J 152:59–66

    Article  Google Scholar 

  54. Lerman LO, Textor SC, Grande JP (2009) Mechanisms of tissue injury in renal artery stenosis: ischemia and beyond. Prog Cardiovasc Dis 52:196–203

    Article  CAS  Google Scholar 

  55. Meola M, Petrucci I (2008) Color Doppler sonography in the study of chronic ischemic nephropathy. J Ultrasound 11:55–73

    Article  CAS  Google Scholar 

  56. Granata A, Fiorini F, Andrulli S et al (2009) Doppler ultrasound and renal artery stenosis: an overview. J Ultrasound 12:133–143

    Article  CAS  Google Scholar 

  57. Zierler RE, Bergelin RO, Davidson RC, Cantwell-Gab K, Polissar NL, Strandness DE Jr (1996) A prospective study of disease progression in patients with atherosclerotic renal artery stenosis. Am J Hypertens 9(11):1055–1061

    Article  CAS  Google Scholar 

  58. Radermacher J, Chavan A, Schäffe J et al (2000) Detection of significant renal artery stenosis with color Doppler sonography: combining extrarenal and intrarenal approaches to minimize technical failure. Clin Nephrol 53:333–343

    CAS  PubMed  Google Scholar 

  59. Johnson RJ, Segal MS, Srinivas T et al (2005) Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link? J Am SocNephrol 16:1909–1919

    CAS  Google Scholar 

  60. Luke RG (1999) Hypertensive nephrosclerosis: pathogenesis and prevalence. Essential hypertension is an important cause of end-stage renal disease. Nephrol Dial Transplant 14:2271–2278

    Article  CAS  Google Scholar 

  61. Smyth JS, Scoble JE. Atheroembolism (2002) Curr Treat Opt Cardiovasc Med 4:255–265

    Article  Google Scholar 

  62. Eknoyan GA (2009) Clinical view of simple and complex renal cysts. JASN 9:1874–1876

    Article  Google Scholar 

  63. Bonsib SM (2010) The classification of renal cystic diseases and other congenital malformations of the kidney and urinary tract. Arch Pathol Lab Med 134:554–568

    PubMed  Google Scholar 

  64. Bosniak MA (1997) The use of the Bosniak classification system for renal cysts and cystic tumors. J Urol 157:1852–1863

    Article  CAS  Google Scholar 

  65. Piscaglia F, Nolsoe C, Dietrich CF et al (2011) The EFSUMB guidelines and recommendations on the clinical practice of contrast-enhanced ultrasound (CEUS): up-date 2011on non-hepatic applications. Ultraschall Med 32:33–59

    Article  Google Scholar 

  66. Sidhu PS, Cantisani V, Dietrich CF et al (2018) The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (long version). Ultraschall Med 39:e2–e44

    Article  Google Scholar 

  67. Nicolau C, Torra R, Bardenas C et al (1999) Autosomal dominant polycystic kidney disease types 1 and 2: assessment of US sensitivity for diagnosis. Radiology 213:273–276

    Article  CAS  Google Scholar 

  68. Sedman A, Bell P, Manco-Johnson M et al (1987) Autosomal dominant polycystic kidney disease in childhood: a longitudinal study. Kidney Int 31:1000–1005

    Article  CAS  Google Scholar 

  69. Blowey DL, Querfeld U, Geary D, Warady BA, Alon U (1996) Ultrasound findings in juvenile nephronophthisis. Pediatr Nephrol 10:22–24

    Article  CAS  Google Scholar 

  70. Avni FE, Garel C, Cassart M, D’Haene N, Hall M, Riccabona M (2012) Imaging and classification of congenital cystic renal diseases. Am J Roentgen AJR 198:1004–1013

    Article  Google Scholar 

  71. Vester U, Kranz B, Hoyer PF (2010) The diagnostic value of ultrasound in cystic kidney diseases. Pediatr Nephrol 25:231–239

    Article  Google Scholar 

  72. Martin-Crespo R, LuqueMialdea R, Rodriguez Alarcon J et al (2007) New concepts in the natural history of multicystic dysplastic kidney. Cir Pediatr 20:75–78

    CAS  PubMed  Google Scholar 

  73. Scandling JD (2007) Acquired cystic kidney disease and renal cell cancer after transplantation: time to rethink screening? JASN 2:621–622

    Google Scholar 

  74. Dunnill MS, Millard PR, Oliver D (1977) Acquired cystic disease of the kidneys: a hazard of long-term intermittent maintenance hemodialysis. J Clin Pathol 30:868–877

    Article  CAS  Google Scholar 

  75. Thurston W, Wilson SR (2005) The urinary tract. In: Rumack CM, Wilson SR, Charboneau JW, Johnson JM (eds) Diagnostic ultrasound, vol 1. Elsevier, St. Louis, pp 373–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Clementi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrucci, I., Clementi, A., Sessa, C. et al. Ultrasound and color Doppler applications in chronic kidney disease. J Nephrol 31, 863–879 (2018). https://doi.org/10.1007/s40620-018-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-018-0531-1

Keywords

Navigation