Skip to main content

Advertisement

Log in

Early stage of obesity potentiates nitric oxide reduction during the development of renal failure

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Obesity is a serious health problem associated with the pathogenesis of various metabolic diseases. Nitric Oxide (NO) plays an important role in kidney function and altered NO levels have been associated with the pathogenesis of obesity. Therefore, we aimed to study whether an early stage of obesity contributes with progression of renal failure through further NO impairment.

Methods

Male C57BL/6 mice were fed with a high-fat diet (HFD) or a normal diet (ND) during 2 weeks. All mice underwent either sham surgery (sham) or 5/6 nephrectomy (Np). One group of HFD Np mice was treated with antioxidants plus L-arginine. Kidney damage parameters were assessed and eNOS metabolism was evaluated.

Results

Mice on a HFD increased body weight, eNOS protein and mRNA expression, and radical oxygen species (ROS). Urine nitrites excretion, urine volume, and plasma BH4 were decreased. In HFD mice, 5/6 Np further increased BH2 and urine protein concentration, ROS levels, and eNOS mRNA expression. The decrease in BH4 plasma levels and urine nitrites excretion was accentuated. NO synthesis stimulation with the antioxidants + L-arginine treatment prevented all these changes.

Conclusions

The early changes in NO metabolism are associated with an early stage of obesity. This effect on NO potentiates kidney damage development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rahmouni K, Correia ML, Haynes WG, Mark AL (2005) Obesity-associated hypertension: new insights into mechanisms. Hypertension 45:9–14

    Article  CAS  PubMed  Google Scholar 

  2. Galassi A, Reynolds K, He J (2006) Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med 119:812–819

    Article  CAS  PubMed  Google Scholar 

  3. Pyörälä M, Miettinen H, Laakso M, Pyörälä K (1998) Hyperinsulinemia and the risk of stroke in healthy middle-aged men: the 22-year follow-up results of the Helsinki policemen study. Stroke 29:1860–1866

    Article  PubMed  Google Scholar 

  4. Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S (2004) Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int 65:1870–1876

    Article  PubMed  Google Scholar 

  5. Ejerblad E, Fored M, Lindblad P, Fryzek J, McLaughlin JK, Nyren O (2006) Obesity and risk of chronic renal failure. J Am Soc Nephrol 17:1695–1702

    Article  CAS  PubMed  Google Scholar 

  6. Sun F, Tao Q, Zhan S (2010) Metabolic syndrome and the development of chronic kidney disease among 118 924 non-diabetic Taiwanese in a retrospective cohort. Nephrology 15:84–92

    Article  CAS  PubMed  Google Scholar 

  7. Henegar JR, Bigler SA, Henegar LK, Tyagi SC, Hall JE (2001) Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol 12:1211–1217

    CAS  PubMed  Google Scholar 

  8. Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, McConnell JP, Chade AR, Lerman LO, Lerman A (2007) Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol 292:H904–H911

    Article  CAS  PubMed  Google Scholar 

  9. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Keogh JB, Grieger JA, Noakes M, Clifton PM (2005) Flow-mediated dilatation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. Arterioscler Thromb Vasc Biol 25:1274–1279

    Article  CAS  PubMed  Google Scholar 

  11. Martins MA, Catta-Preta M, Mandarim-de-Lacerda CA, Aguila MB, Brunini TC, Mendes-Ribeiro AC (2010) High fat diets modulate nitric oxide biosynthesis and antioxidant defence in red blood cells from C57BL/6 mice. Arch Biochem Biophys 499:56–61

    Article  CAS  PubMed  Google Scholar 

  12. Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol 294:F1–F9

    Article  CAS  PubMed  Google Scholar 

  13. Chander V, Chopra K (2006) Protective effect of nitric oxide pathway in resveratrol renal ischemia-reperfusion injury in rats. Arch Med Res 37:19–26

    Article  CAS  PubMed  Google Scholar 

  14. Arellano-Mendoza MG, Castillo-Henkel C, Medina-Santillan R, Jarillo Luna RA, Robles HV, Romo E, Rios A, Escalante B (2008) Kidney damage after renal ablation is worsened in endothelial nitric oxide synthase (-/-) mice and improved by combined administration of l-arginine and antioxidants. Nephrology 13:218–227

    Article  Google Scholar 

  15. Sanchez PL, Salgado LM, Ferreri NR, Escalante B (1999) Effects of cyclooxygenase-2 inhibition on renal function after renal ablation. Hypertension 34:848–853

    Article  CAS  PubMed  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  17. Arellano-Mendoza MG, Vargas-Robles H, Del Valle-Mondragon L, Rios A, Escalante B (2011) Prevention of renal injury and endothelial dysfunction by chronic l-arginine and antioxidant treatment. Ren Fail 33:47–53

    Article  CAS  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2[−Delta Delta C(T)] method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  19. Lin S, Thomas TC, Storlien LH, Huang XF (2000) Development of high fat diet-induced obesity and leptin resistance in C57Bl/6 J mice. Int J Obes Relat Metab Disord 24:639–646

    Article  CAS  PubMed  Google Scholar 

  20. Winzell MS, Ahrén B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53:S215–S219

    Article  PubMed  Google Scholar 

  21. Deji N, Kume S, Araki S, Soumura M, Sugimoto T, Isshiki K, Chin-Kanasaki M, Sakaguchi M, Koya D, Haneda M, Kashiwagi A, Uzu T (2009) Structural and functional changes in the kidneys of high-fat diet-induced obese mice. Am J Physiol Renal Physiol 296:F118–F126

    Article  CAS  PubMed  Google Scholar 

  22. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the National cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  23. Gretz N, Waldherr R, Strauch M (1993) The remnant kidney model. In: Gretz N, Strauch N (eds) Experimental and genetic rat models of chronic renal failure. Karger, Basel, pp 1–28

    Google Scholar 

  24. Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL (2001) Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 37:554–560

    Article  CAS  PubMed  Google Scholar 

  25. Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566

    Article  CAS  PubMed  Google Scholar 

  26. Korda M, Kubant R, Patton S, Malinski T (2008) Leptin-induced endothelial dysfunction in obesity. Am J Physiol Heart Circ Physiol 295:H1514–H1521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lin S, Thomas TC, Storlien LH, Huang XF (2000) Development of high fat diet-induced obesity and leptin resistance in C57B1/6 J mice. Intern J Obes 24:639–646

    Article  CAS  Google Scholar 

  28. Avogaro A, de Kreutzenberg SV (2005) Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta 360:9–26

    Article  CAS  PubMed  Google Scholar 

  29. Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L722

    CAS  PubMed  Google Scholar 

  30. Landmesser U, Dikalov S et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 111:1201–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Grumbach IM, Chen W, Mertens SA, Harrison DG (2005) A negative feedback mechanism involving nitric oxide and nuclear factor κ-B modulates endothelial nitric oxide synthase transcription. J Mol Cell Cardiol 39:595–603

    Article  CAS  PubMed  Google Scholar 

  32. Herrera M, Garvin JL (2005) Recent advances in the regulation of nitric oxide in the kidney. Hypertension 45:1062–1067

    Article  CAS  PubMed  Google Scholar 

  33. Codoñer-Franch P, Valls-Bellés V, Arilla-Codoñer A, Alonso-Iglesias E (2011) Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res 158:369–384

    Article  PubMed  Google Scholar 

  34. Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes 30:400–418

    Article  CAS  Google Scholar 

  35. Garcia-Diaz DF, Campion J, Milagro FI, Boque N, Moreno-Aliaga MJ, Martinez JA (2010) Vitamin C inhibits leptin secretion and some glucose/lipid metabolic pathways in primary rat adipocytes. J Mol Endocrinol 45:33–43

    Article  CAS  PubMed  Google Scholar 

  36. Huang A, Vita JA, Venema RC, Keaney JF Jr (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275:17399–17406

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Escalante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gámez-Méndez, A.M., Vargas-Robles, H., Arellano-Mendoza, M. et al. Early stage of obesity potentiates nitric oxide reduction during the development of renal failure. J Nephrol 27, 281–287 (2014). https://doi.org/10.1007/s40620-013-0029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-013-0029-9

Keywords

Navigation