Skip to main content
Log in

The association between 2,4-D and serum testosterone levels: NHANES 2013–2014

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

A Correction to this article was published on 05 January 2022

This article has been updated

Abstract

Background

Previous studies have investigated associations between herbicides such as 2,4-Dichlorophenoxyacetic acid (2,4-D) and dyshormonogenesis, specifically low testosterone, in human, rodent, and cell models, but results have been conflicting and inconclusive.

Methods

Using data from a cross-sectional study of 456 adult men in the 2013–2014 NHANES survey cycle, we examined the relationship between urinary concentrations of 2,4-D and serum testosterone levels.

Results

Multivariable regression models adjusting for potential confounders revealed a significant, negative association between urinary 2,4-D and mean serum testosterone among U.S. adult males (β =  − 11.4 ng/dL, p = 0.02). Multivariable logistic regression models using a cutoff defining abnormally low testosterone (i.e., serum testosterone < 300 ng/dL) revealed no significant associations between 2,4-D and the odds of low testosterone.

Conclusion

These findings expand on previous literature implicating a role for 2,4-D in the etiology of low testosterone and dyshormonogenesis. Future studies are warranted to corroborate these findings, determine clinical significance, and to investigate the proposed potential biological mechanisms underlying this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

A full list of data sets supporting the results in this research article can be found at: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2013.

Change history

References

  1. Association AU (2018) Evaluation and management of testosterone deficiency 2018. https://www.auanet.org/guidelines/testosterone-deficiency-guideline. (Accessed 2020 Oct 26)

  2. Salonia A, Rastrelli G, Hackett G, Seminara SB, Huhtaniemi IT, Rey RA, Hellstrom WJG, Palmert MR, Corona G, Dohle GR, Khera M, Chan Y-M, Maggi M (2019) Paediatric and adult-onset male hypogonadism. Nat Rev Dis Primers (1):38. https://doi.org/10.1038/s41572-019-0087-y. (PubMed PMID: 31147553)

  3. Mahmoud A, Comhaire FH (2006) Mechanisms of disease: late-onset hypogonadism. Nat Clin Pract Urol 3(8):430–438. https://doi.org/10.1038/ncpuro0560. (Epub 2006/08/12. PubMed PMID: 16902519)

  4. Bain J (2007) The many faces of testosterone. Clin Interv Aging 2(4):567–576. https://doi.org/10.2147/cia.s1417. (Epub 2008/01/30. PubMed PMID: 18225457; PMCID: PMC2686330)

  5. Sterling J, Bernie AM, Ramasamy R (2015) Hypogonadism: easy to define, hard to diagnose, and controversial to treat. Can Urol Assoc J 9(1–2):65–68. https://doi.org/10.5489/cuaj.2416. (Epub 2015/03/05. PubMed PMID: 25737761; PMCID: PMC4336035)

  6. Huang MY, Parker G, Zarotsky V, Carman W, Morgentaler A, Jones H, Singhal P (2013) The prevalence, incidence, and treatment rates of hypogonadism in men across geographies: a systematic literature review. Value Health 16(3):A70–A71. https://doi.org/10.1016/j.jval.2013.03.315

    Article  Google Scholar 

  7. Gleicher N, Kushnir VA, Barad DH (2019) Worldwide decline of IVF birth rates and its probable causes. Hum Reprod Open 219(3):hoz017. https://doi.org/10.1093/hropen/hoz017. (Epub 2019/08/14. PubMed PMID: 31406934; PMCID: PMC6686986)

  8. Mendiola J, Torres-Cantero AM, Moreno-Grau JM, Ten J, Roca M, Moreno-Grau S, Bernabeu R (2008) Exposure to environmental toxins in males seeking infertility treatment: a case-controlled study. Reprod Biomed Online 16(6):842–850. https://doi.org/10.1016/S1472-6483(10)60151-4

    Article  PubMed  Google Scholar 

  9. Hirsh A (2003) Male subfertility. BMJ 327(7416):669. https://doi.org/10.1136/bmj.327.7416.669

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mehta A, Nangia AK, Dupree JM, Smith JF (2016) Limitations and barriers in access to care for male factor infertility. Fertil Steril 105(5):1128–1137. https://doi.org/10.1016/j.fertnstert.2016.03.023. (Epub 2016/04/08. PubMed PMID: 27054307)

  11. Seftel AD (2006) Male hypogonadism. Part I: epidemiology of hypogonadism. Int J Impot Res 18(2):115–120. https://doi.org/10.1038/sj.ijir.3901397. (Epub 2005/09/30. PubMed PMID: 16193071)

  12. Del Giudice F, Glover F, Belladelli F, De Berardinis E, Sciarra A, Salciccia S, Kasman AM, Chen T, Eisenberg ML (2021) Association of daily step count and serum testosterone among men in the United States. Endocrine.

  13. Aparecida M, Campos V-CBd, Miyuki M (2013) Toxicity of herbicides: impact on aquatic and soil biota and human health. Herb Curr Res Case Stud Use.

  14. Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. Excli J 17:1101–1136. https://doi.org/10.17179/excli2018-1710. (Epub 2018/12/20. PubMed PMID: 30564086; PMCID: PMC6295629)

  15. Burns CJ, Swaen GMH (2012) Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology. Crit Rev Toxicol 42(9):768–786. https://doi.org/10.3109/10408444.2012.710576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. EPA (2012) Exposure assessment tools by chemical classes-pesticides 2020 [updated October 23 2020]. https://www.epa.gov/expobox/exposure-assessment-tools-chemical-classes-pesticides. (Accessed date 1 Jan 2021)

  17. Gervais JL, Buhl K, Stone D (2008) 2,4-D technical fact sheet: national pesticide information center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/2,4-DTech.html.

  18. Munro IC, Carlo GL, Orr JC, Sund KG, Wilson RM, Kennepohl E, Lynch BS, Jablinske M (1992) A comprehensive, integrated review and evaluation of the scientific evidence relating to the safety of the herbicide 2,4-D. J Am Coll Toxicol 11(5):559–664. https://doi.org/10.3109/10915819209141893

    Article  CAS  Google Scholar 

  19. Kohli JD, Khanna RN, Gupta BN, Dhar MM, Tandon JS, Sircar KP (1974) Absorption and excretion of 2,4-dichlorophenoxyacetic acid in man. Xenobiotica 4(2):97–100. https://doi.org/10.3109/00498257409049349

    Article  CAS  PubMed  Google Scholar 

  20. Morgan MK (2015) Predictors of urinary levels of 2,4-dichlorophenoxyacetic acid, 3,5,6-trichloro-2-pyridinol, 3-phenoxybenzoic acid, and pentachlorophenol in 121 adults in Ohio. Int J Hyg Environ Health 218(5):479–488. https://doi.org/10.1016/j.ijheh.2015.03.015. (Epub 2015/04/22. PubMed PMID: 25891895)

  21. Aylward LL, Morgan MK, Arbuckle TE, Barr DB, Burns CJ, Alexander BH, Hays SM (2010) Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents. Environ Health Perspect. 118(2):177–181. https://doi.org/10.1289/ehp.0900970. (Epub 2010/02/04. PubMed PMID: 20123603; PMCID: PMC2831914)

  22. Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, Wang C, Brazil C, Overstreet JW, Study for Future Families Research G (2003) Semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect 111(12):1478–1484. https://doi.org/10.1289/ehp.6417. (Epub 2003/09/02. PubMed PMID: 12948887; PMCID: PMC1241650)

  23. Jeng HA (2014) Exposure to endocrine disrupting chemicals and male reproductive health. Front Pub Health 2:55. https://doi.org/10.3389/fpubh.2014.00055. (Epub 2014/06/14. PubMed PMID: 24926476; PMCID: PMC4046332)

  24. Harada Y, Tanaka N, Ichikawa M, Kamijo Y, Sugiyama E, Gonzalez FJ, Aoyama T (2016) PPARalpha-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Arch Toxicol. 90(12):3061–3071. https://doi.org/10.1007/s00204-016-1669-z. (Epub 2016/02/04. PubMed PMID: 26838045; PMCID: PMC6334304)

  25. Marouani N, Tebourbi O, Cherif D, Hallegue D, Yacoubi MT, Sakly M, Benkhalifa M, Ben Rhouma K (2017) Effects of oral administration of 2,4-dichlorophenoxyacetic acid (2,4-D) on reproductive parameters in male Wistar rats. Environ Sci Pollut Res Int 24(1):519–526. https://doi.org/10.1007/s11356-016-7656-3. (Epub 2016/10/14. PubMed PMID: 27734311)

  26. Panuwet P, Ladva C, Barr DB, Prapamontol T, Meeker JD, D'Souza PE, Maldonado H, Ryan PB, Robson MG (2018) Investigation of associations between exposures to pesticides and testosterone levels in Thai farmers. Arch Environ Occup Health 73(4):205–218. https://doi.org/10.1080/19338244.2017.1378606. (Epub 2017/09/14. PubMed PMID: 28901838; PMCID: PMC6422528)

  27. Garry VF, Tarone RE, Kirsch IR, Abdallah JM, Lombardi DP, Long LK, Burroughs BL, Barr DB, Kesner JS (2001) Biomarker correlations of urinary 2,4-D levels in foresters: genomic instability and endocrine disruption. Environ Health Perspect 109(5):495–500. https://doi.org/10.1289/ehp.01109495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prevention CfDCa (2020) NHANES Survey Methods and Analytic Guidelines. https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx. (Accessed 26 Oct 2021)

  29. Prevention CfDCa (2020) NHANES 2013–2014 laboratory data overview. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/overviewlab.aspx?BeginYear=2013. (Accessed 26 Oct 2020)

  30. Prevention CfDCa (2020) NHANES 2013–2014 questionnaire data overview. [updated]. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/OverviewQuex.aspx?BeginYear=2013. (Accessed date 24 Aug 2020)

  31. SAS/ACCESS® 9.4 Interface to ADABAS: Reference. Cary, NC: SAS Institute Inc

  32. Romano RM, Romano MA, Bernardi MM, Furtado PV, Oliveira CA (2010) Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Arch Toxicol 84(4):309–317. https://doi.org/10.1007/s00204-009-0494-z. (Epub 2009/12/17. PubMed PMID: 20012598)

  33. Kaur RP, Gupta V, Christopher AF, Bansal P (2015) Potential pathways of pesticide action on erectile function – A contributory factor in male infertility. Asian Pacific J Reprod 4(4):322–330. https://doi.org/10.1016/j.apjr.2015.07.012

    Article  Google Scholar 

  34. Mazaheri F, Aliabad KK, Kalantar SM, Ziya N, Khoradmehr A, Anvari M (2020) Effects of phosalone plant pesticide on sperm parameters and sexual hormone levels in Wistar rats: an experimental study. Int J Reprod Biomed 18(9):785–794. https://doi.org/10.18502/ijrm.v13i9.7683 (PubMed PMID: 33062924)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oakes DJ, Webster WS, Brown-Woodman PD, Ritchie HE (2002) Testicular changes induced by chronic exposure to the herbicide formulation, Tordon 75D (2,4-dichlorophenoxyacetic acid and picloram) in rats. Reprod Toxicol (Elmsford, NY). 16(3):281–289. https://doi.org/10.1016/s0890-6238(02)00015-1. (Epub 2002/07/20. PubMed PMID: 12128102)

  36. Clair E, Mesnage R, Travert C, Séralini G (2012) A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicol In Vitro Internat J Pub Assoc BIBRA. 26(2):269–279. https://doi.org/10.1016/j.tiv.2011.12.009. (Epub 2011/12/28. PubMed PMID: 22200534)

  37. Svechnikov K, Izzo G, Landreh L, Weisser J, Soder O (2010) Endocrine disruptors and Leydig cell function. J Biomed Biotechnol. https://doi.org/10.1155/2010/684504. (Epub 2010/09/24. PubMed PMID: 20862379; PMCID: PMC2938463)

  38. Barabas K, Szabo-Meleg E, Abraham IM (2020) Effect of inflammation on female gonadotropin-releasing hormone (GnRH) neurons: mechanisms and consequences. Int J Mol Sci 21(2). https://doi.org/10.3390/ijms21020529. (Epub 2020/01/18. PubMed PMID: 31947687; PMCID: PMC7014424)

  39. Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci U S A. 107(10):4612–4617. https://doi.org/10.1073/pnas.0909519107. (Epub 2010/03/03. PubMed PMID: 20194757; PMCID: PMC2842049)

  40. Syriou V, Papanikolaou D, Kozyraki A, Goulis DG (2018) Cytokines and male infertility. European cytokine network. 29(3):73–82. https://doi.org/10.1684/ecn.2018.0412. (Epub 2018/12/15. PubMed PMID: 30547889)

  41. Intayoung U, Wunnapuk K, Kohsuwan K, Sapbamrer R, Khacha-ananda S (2020) Occupational exposure of herbicides on oxidative stress in sprayers. Saf Health Work. https://doi.org/10.1016/j.shaw.2020.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mahmoudinia S, Niapour A, Ghasemi Hamidabadi H, Mazani M (2019) 2,4-D causes oxidative stress induction and apoptosis in human dental pulp stem cells (hDPSCs). Environ Sci Pollut Res Int 26(25):26170–26183. https://doi.org/10.1007/s11356-019-05837-0. (Epub 2019/07/08. PubMed PMID: 31280441)

  43. Burroughs B, Tarone R, Kesner JS, Garry VF (1999) Herbicides and adjuvants: an evolving view. Toxicol Ind Health 15(1–2):160–168. https://doi.org/10.1177/074823379901500113

    Article  Google Scholar 

  44. Matsumoto AM, Bremner WJ (2004) Serum testosterone assays—accuracy matters. J Clin Endocrinol Metab 89(2):520–524. https://doi.org/10.1210/jc.2003-032175

    Article  CAS  PubMed  Google Scholar 

  45. Gray LE, Ostby J, Furr J, Lambright C, Hotchkiss A, Wilson VS (2004) Cumulative effects of endocrine disrupters (EDCs): synergy or additivity. Toxicologist 78(1-S):282

  46. Dunn AD (2019) Pesticides; interim process for evaluating potential synergistic effects of pesticides during the registration process; notice of availability and request for comment. Federal Register. 84(174).

  47. Zama AM, Uzumcu M (2010) Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front Neuroendocrinol. 31(4):420–439. https://doi.org/10.1016/j.yfrne.2010.06.003 (Epub 2010/07/04, PubMed PMID: 20609371)

  48. Major KM, DeCourten BM, Li J, Britton M, Settles ML, Mehinto AC, Connon RE, Brander SM (2020) Early life exposure to environmentally relevant levels of endocrine disruptors drive multigenerational and transgenerational epigenetic changes in a fish model. Front Marine Sci. https://doi.org/10.3389/fmars.2020.00471

Download references

Acknowledgements

Not applicable.

Funding

The authors received no external funding for this research study.

Author information

Authors and Affiliations

Authors

Contributions

FG is the primary author who drafted the manuscript, obtained references, performed most of the data analysis, and helped with the conceptualization of the study. FB and FDG both performed data analysis with the regression models, obtained background information for references, and proof read the manuscript drafts. TC also performed extensive background research, as well as proofed all drafts of the manuscript and helped created figures and tables. CE, and R all provided guidance at the conceptualization stage, proofed all drafts of the manuscript, and helped perform regression analysis.

Corresponding author

Correspondence to F. E. Glover.

Ethics declarations

Conflict of interest

The authors have no competing financial interests.

Ethics approval

Health information collected in the NHANES is kept in strictest confidence. During the informed consent process, survey participants were assured that data collected will be used only for stated purposes and will not be disclosed or released to others without the consent of the individual or the establishment in accordance with Sect. 308(d) of the Public Health Service Act (42 U.S.C. 242 m).

Consent for publication

Participants in this study agreed to consent for publication in accordance with Sect. 308(d) of the Public Health Service Act (42 U.S.C. 242 m).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 354 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glover, F.E., Del Giudice, F., Belladelli, F. et al. The association between 2,4-D and serum testosterone levels: NHANES 2013–2014. J Endocrinol Invest 45, 787–796 (2022). https://doi.org/10.1007/s40618-021-01709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01709-y

Keywords

Navigation