Skip to main content

Advertisement

Log in

p38MAPK controls fibroblast growth factor 23 (FGF23) synthesis in UMR106-osteoblast-like cells and in IDG-SW3 osteocytes

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

p38 mitogen-activated protein kinase (p38MAPK) is a serine/threonine kinase activated by cellular stress stimuli including radiation, osmotic shock, and inflammation and influencing apoptosis, cell proliferation, and autophagy. Moreover, p38MAPK induces transcriptional activity of the transcription factor complex NFκB mediating multiple pro-inflammatory cellular responses. Fibroblast growth factor 23 (FGF23) is produced by bone cells, and regulates renal phosphate and vitamin D metabolism as a hormone. FGF23 expression is enhanced by NFκB. Here, we analyzed the relevance of p38MAPK activity for the production of FGF23.

Methods

Fgf23 expression was analyzed by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast-like cells and in IDG-SW3 osteocytes.

Results

Inhibition of p38MAPK with SB203580 or SB202190 significantly down-regulated Fgf23 expression and FGF23 protein expression. Conversely, p38MAPK activator anisomycin increased the abundance of Fgf23 mRNA. NFκB inhibitors wogonin and withaferin A abrogated the stimulatory effect of anisomycin on Fgf23 gene expression.

Conclusion

p38MAPK induces FGF23 formation, an effect at least in part dependent on NFκB activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429(3):403–417. https://doi.org/10.1042/BJ20100323

    Article  CAS  PubMed  Google Scholar 

  2. Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773(8):1358–1375. https://doi.org/10.1016/j.bbamcr.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Liu L, Zhou D (2011) Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury. Radiat Res 176(6):743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gatidis S, Zelenak C, Fajol A et al (2011) p38 MAPK activation and function following osmotic shock of erythrocytes. Cell Physiol Biochem 28(6):1279–1286. https://doi.org/10.1159/000335859

    Article  CAS  PubMed  Google Scholar 

  5. Sreekanth GP, Chuncharunee A, Sirimontaporn A et al (2016) SB203580 modulates p38 MAPK signaling and dengue virus-induced liver injury by reducing MAPKAPK2, HSP27, and ATF2 phosphorylation. PLoS One 11(2):e0149486. https://doi.org/10.1371/journal.pone.0149486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonney EA (2017) Mapping out p38MAPK. Am J Reprod Immunol. https://doi.org/10.1111/aji.12652

    Article  PubMed  PubMed Central  Google Scholar 

  7. Risco A, Cuenda A (2012) New insights into the p38γ and p38δ MAPK pathways. J Signal Transduct 2012:520289. https://doi.org/10.1155/2012/520289

    Article  CAS  PubMed  Google Scholar 

  8. Cai B, Chang SH, Becker EBE et al (2006) p38 MAP kinase mediates apoptosis through phosphorylation of BimEL at Ser-65. J Biol Chem 281(35):25215–25222. https://doi.org/10.1074/jbc.M512627200

    Article  CAS  PubMed  Google Scholar 

  9. Kralova J, Dvorak M, Koc M et al (2008) p38 MAPK plays an essential role in apoptosis induced by photoactivation of a novel ethylene glycol porphyrin derivative. Oncogene 27(21):3010–3020. https://doi.org/10.1038/sj.onc.1210960

    Article  CAS  PubMed  Google Scholar 

  10. Sui X, Kong N, Ye L et al (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 344(2):174–179. https://doi.org/10.1016/j.canlet.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  11. Ventura JJ, Tenbaum S, Perdiguero E et al (2007) p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat Genet 39(6):750–758. https://doi.org/10.1038/ng2037

    Article  CAS  PubMed  Google Scholar 

  12. Cong Q, Jia H, Li P et al (2017) p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep 7:45964. https://doi.org/10.1038/srep45964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Goh CH, Li B (2007) p38 mitogen-activated protein kinase regulates osteoblast differentiation through osterix. Endocrinology 148(4):1629–1637. https://doi.org/10.1210/en.2006-1000

    Article  CAS  PubMed  Google Scholar 

  14. He Y, She H, Zhang T et al (2018) p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol 217(1):315–328. https://doi.org/10.1083/jcb.201701049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kefaloyianni E, Gaitanaki C, Beis I (2006) ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 18(12):2238–2251. https://doi.org/10.1016/j.cellsig.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  16. Liu T, Zhang L, Joo D et al (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  17. Olson CM, Hedrick MN, Izadi H et al (2006) p38 mitogen-activated protein kinase controls NF-κB transcriptional activation and tumor necrosis factor alpha production through RelA Phosphorylation Mediated by mitogen- and stress-activated protein kinase 1 in response to borrelia burgdorferi antigens. Infect Immun 75(1):270–277. https://doi.org/10.1128/IAI.01412-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eylenstein A, Schmidt S, Gu S et al (2011) Transcription factor NF-κB regulates expression of pore-forming Ca2+ channel unit, Orai1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions. J Biol Chem 287(4):2719–2730. https://doi.org/10.1074/jbc.M111.275925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prakriya M (2009) The molecular physiology of CRAC channels. Immunol Rev 231(1):88–98. https://doi.org/10.1111/j.1600-065X.2009.00820.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prakriya M (2013) Store-operated Orai channels: structure and function. Curr Top Membr 71:1–32. https://doi.org/10.1016/B978-0-12-407870-3.00001-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feger M, Hase P, Zhang B et al (2017) The production of fibroblast growth factor 23 is controlled by TGF-β2. Sci Rep 7(1):4982. https://doi.org/10.1038/s41598-017-05226-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glosse P, Feger M, Mutig K et al (2018) AMP-activated kinase is a regulator of fibroblast growth factor 23 production. Kidney Int 94(3):491–501. https://doi.org/10.1016/j.kint.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  23. Zhang B, Umbach AT, Chen H et al (2016) Up-regulation of FGF23 release by aldosterone. Biochem Biophys Res Commun 470(2):384–390. https://doi.org/10.1016/j.bbrc.2016.01.034

    Article  CAS  PubMed  Google Scholar 

  24. Zhang B, Yan J, Umbach AT et al (2016) NFκB-sensitive Orai1 expression in the regulation of FGF23 release. J Mol Med 94(5):557–566. https://doi.org/10.1007/s00109-015-1370-3

    Article  CAS  PubMed  Google Scholar 

  25. Zhang B, Yan J, Schmidt S et al (2015) Lithium-sensitive store-operated Ca2+ entry in the regulation of FGF23 release. Neurosignals 23(1):34–48. https://doi.org/10.1159/000442602

    Article  PubMed  Google Scholar 

  26. Boland JM, Tebben PJ, Folpe AL (2018) Phosphaturic mesenchymal tumors: what an endocrinologist should know. J Endocrinol Investig 41(10):1173–1184. https://doi.org/10.1007/s40618-018-0849-5

    Article  CAS  Google Scholar 

  27. Kamelian T, Saki F, Jeddi M et al (2018) Effect of cholecalciferol therapy on serum FGF23 in vitamin D deficient patients: a randomized clinical trial. J Endocrinol Investig 41(3):299–306. https://doi.org/10.1007/s40618-017-0739-2

    Article  CAS  Google Scholar 

  28. Saki F, Kasaee SR, Sadeghian F et al (2018) Investigating the effect of testosterone by itself and in combination with letrozole on 1,25-dihydroxy vitamin D and FGF23 in male rats. J Endocrinol Investig 42(1):19–25. https://doi.org/10.1007/s40618-018-0875-3

    Article  CAS  Google Scholar 

  29. Hu MC, Shiizaki K, Kuro-o M et al (2013) Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 75:503–533. https://doi.org/10.1146/annurev-physiol-030212-183727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saini RK, Kaneko I, Jurutka PW et al (2013) 1,25-dihydroxyvitamin D(3) regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif Tissue Int 92(4):339–353. https://doi.org/10.1007/s00223-012-9683-5

    Article  CAS  PubMed  Google Scholar 

  31. Kuro-o M (2013) Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 9(11):650–660. https://doi.org/10.1038/nrneph.2013.111

    Article  CAS  PubMed  Google Scholar 

  32. Shimada T, Kakitani M, Yamazaki Y et al (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Investig 113(4):561–568. https://doi.org/10.1172/JCI200419081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raya AI, Rios R, Pineda C et al (2016) Energy-dense diets increase FGF23, lead to phosphorus retention and promote vascular calcifications in rats. Sci Rep 6:36881. https://doi.org/10.1038/srep36881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285

    Article  CAS  PubMed  Google Scholar 

  35. Lu X, Hu MC (2016) Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Dis (Basel) 3(1):15–23. https://doi.org/10.1159/000452880

    Article  Google Scholar 

  36. Faul C (2016) Cardiac actions of fibroblast growth factor 23. Bone 100:69–79. https://doi.org/10.1016/j.bone.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossaint J, Oehmichen J, van Aken H et al (2016) FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Investig 126(3):962–974. https://doi.org/10.1172/JCI83470

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang K, Peretz-Soroka H, Wu J et al (2017) Fibroblast growth factor 23 weakens chemotaxis of human blood neutrophils in microfluidic devices. Sci Rep 7(1):3100. https://doi.org/10.1038/s41598-017-03210-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dalton GD, Xie J, An S-W et al (2017) New insights into the mechanism of action of soluble Klotho. Front Endocrinol (Lausanne) 8:323. https://doi.org/10.3389/fendo.2017.00323

    Article  Google Scholar 

  40. Nitta K (2018) Fibroblast growth factor 23 and cardiovascular disease in patients with chronic kidney disease. Ren Replace Ther 4(1):19. https://doi.org/10.1186/s41100-018-0172-9

    Article  Google Scholar 

  41. Wahl P, Wolf M (2012) FGF23 in chronic kidney disease. Adv Exp Med Biol 728:107–125. https://doi.org/10.1007/978-1-4614-0887-1_8

    Article  CAS  PubMed  Google Scholar 

  42. Di Giuseppe R, Kühn T, Hirche F et al (2015) Plasma fibroblast growth factor 23 and risk of cardiovascular disease: results from the EPIC-Germany case-cohort study. Eur J Epidemiol 30(2):131–141. https://doi.org/10.1007/s10654-014-9982-4

    Article  CAS  PubMed  Google Scholar 

  43. Ozeki M, Fujita S-i, Kizawa S et al (2014) Association of serum levels of FGF23 and α-Klotho with glomerular filtration rate and proteinuria among cardiac patients. BMC Nephrol 15:147. https://doi.org/10.1186/1471-2369-15-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Filler G, Liu D, Huang S-HS et al (2011) Impaired GFR is the most important determinant for FGF-23 increase in chronic kidney disease. Clin Biochem 44(5–6):435–437. https://doi.org/10.1016/j.clinbiochem.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  45. Chudek J, Kocełak P, Owczarek A et al (2014) Fibroblast growth factor 23 (FGF23) and early chronic kidney disease in the elderly. Nephrol Dial Transplant 29(9):1757–1763. https://doi.org/10.1093/ndt/gfu063

    Article  CAS  PubMed  Google Scholar 

  46. Larsson T, Nisbeth U, Ljunggren O et al (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64(6):2272–2279. https://doi.org/10.1046/j.1523-1755.2003.00328.x

    Article  CAS  PubMed  Google Scholar 

  47. Schnedl C, Fahrleitner-Pammer A, Pietschmann P et al (2015) FGF23 in acute and chronic illness. Dis Mark 2015:358086. https://doi.org/10.1155/2015/358086

    Article  CAS  Google Scholar 

  48. Kolek OI, Hines ER, Jones MD et al (2005) 1Alpha,25-dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal–gastrointestinal–skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289(6):G1036–G1042. https://doi.org/10.1152/ajpgi.00243.2005

    Article  CAS  PubMed  Google Scholar 

  49. Krajisnik T, Björklund P, Marsell R et al (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195(1):125–131. https://doi.org/10.1677/JOE-07-0267

    Article  CAS  PubMed  Google Scholar 

  50. Lanske B, Razzaque MS (2014) Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int 86(6):1072–1074. https://doi.org/10.1038/ki.2014.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Knab VM, Corbin B, Andrukhova O et al (2017) Acute parathyroid hormone injection increases C-terminal but not intact fibroblast growth factor 23 levels. Endocrinology 158(5):1130–1139. https://doi.org/10.1210/en.2016-1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sigrist M, Tang M, Beaulieu M et al (2013) Responsiveness of FGF-23 and mineral metabolism to altered dietary phosphate intake in chronic kidney disease (CKD): results of a randomized trial. Nephrol Dial Transplant 28(1):161–169. https://doi.org/10.1093/ndt/gfs405

    Article  CAS  PubMed  Google Scholar 

  53. Vervloet MG, van Ittersum FJ, Büttler RM et al (2011) Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin J Am Soc Nephrol 6(2):383–389. https://doi.org/10.2215/CJN.04730510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Glosse P, Fajol A, Hirche F et al (2018) A high-fat diet stimulates fibroblast growth factor 23 formation in mice through TNFα upregulation. Nutr Diabetes 8(1):36. https://doi.org/10.1038/s41387-018-0037-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Masuda Y, Ohta H, Morita Y et al (2015) Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol Pharm Bull 38(5):687–693. https://doi.org/10.1248/bpb.b14-00276

    Article  CAS  PubMed  Google Scholar 

  56. Rossaint J, Unruh M, Zarbock A (2017) Fibroblast growth factor 23 actions in inflammation: a key factor in CKD outcomes. Nephrol Dial Transplant 32(9):1448–1453. https://doi.org/10.1093/ndt/gfw331

    Article  CAS  PubMed  Google Scholar 

  57. Wallquist C, Mansouri L, Norrbäck M et al (2018) Associations of fibroblast growth factor 23 with markers of inflammation and leukocyte transmigration in chronic kidney disease. Nephron 138(4):287–295. https://doi.org/10.1159/000485472

    Article  CAS  PubMed  Google Scholar 

  58. Sharaf El Din UAA, Salem MM, Abdulazim DO (2017) FGF23 and inflammation. World J Nephrol 6(1):57–58. https://doi.org/10.5527/wjn.v6.i1.57

    Article  PubMed  PubMed Central  Google Scholar 

  59. David V, Martin A, Isakova T et al (2016) Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89(1):135–146. https://doi.org/10.1038/ki.2015.290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wolf M, Koch TA, Bregman DB (2013) Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 28(8):1793–1803. https://doi.org/10.1002/jbmr.1923

    Article  CAS  PubMed  Google Scholar 

  61. Bär L, Feger M, Fajol A et al (2018) Insulin suppresses the production of fibroblast growth factor 23 (FGF23). Proc Natl Acad Sci USA 115(22):5804–5809. https://doi.org/10.1073/pnas.1800160115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woo SM, Rosser J, Dusevich V et al (2011) Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26(11):2634–2646. https://doi.org/10.1002/jbmr.465

    Article  CAS  PubMed  Google Scholar 

  63. Rodríguez-Carballo E, Gámez B, Ventura F (2016) p38 MAPK signaling in osteoblast differentiation. Front Cell Dev Biol 4(21):30476. https://doi.org/10.3389/fcell.2016.00040

    Article  Google Scholar 

  64. Greenblatt MB, Shim J-H, Zou W et al (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120(7):2457–2473. https://doi.org/10.1172/JCI42285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ge C, Xiao G, Jiang Di et al (2009) Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 284(47):32533–32543. https://doi.org/10.1074/jbc.M109.040980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mehrotra M, Krane SM, Walters K et al (2004) Differential regulation of platelet-derived growth factor stimulated migration and proliferation in osteoblastic cells. J Cell Biochem 93(4):741–752. https://doi.org/10.1002/jcb.20138

    Article  CAS  PubMed  Google Scholar 

  67. Nam TW, Yoo CI, Kim HT et al (2008) The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J Bone Miner Metab 26(6):551–560. https://doi.org/10.1007/s00774-008-0864-2

    Article  CAS  PubMed  Google Scholar 

  68. Zhou FH, Foster BK, Zhou X-F et al (2006) TNF-alpha mediates p38 MAP kinase activation and negatively regulates bone formation at the injured growth plate in rats. J Bone Miner Res 21(7):1075–1088. https://doi.org/10.1359/jbmr.060410

    Article  CAS  PubMed  Google Scholar 

  69. Li X, Udagawa N, Itoh K et al (2002) p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143(8):3105–3113. https://doi.org/10.1210/endo.143.8.8954

    Article  CAS  PubMed  Google Scholar 

  70. Allard L, Demoncheaux N, Machuca-Gayet I et al (2015) Biphasic effects of vitamin D and FGF23 on human osteoclast biology. Calcif Tissue Int 97(1):69–79. https://doi.org/10.1007/s00223-015-0013-6

    Article  CAS  PubMed  Google Scholar 

  71. Chen G, Deng C, Li Y-P (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288. https://doi.org/10.7150/ijbs.2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tan Y, Xu Q, Li Y et al (2014) Crosstalk between the p38 and TGF-β signaling pathways through TβRI, TβRII and Smad3 expression in plancental choriocarcinoma JEG-3 cells. Oncol Lett 8(3):1307–1311. https://doi.org/10.3892/ol.2014.2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rey A, Manen D, Rizzoli R et al (2007) Evidences for a role of p38 MAP kinase in the stimulation of alkaline phosphatase and matrix mineralization induced by parathyroid hormone in osteoblastic cells. Bone 41(1):59–67. https://doi.org/10.1016/j.bone.2007.02.031

    Article  CAS  PubMed  Google Scholar 

  74. Böhm C, Hayer S, Kilian A et al (2009) The alpha-isoform of p38 MAPK specifically regulates arthritic bone loss. J Immunol 183(9):5938–5947. https://doi.org/10.4049/jimmunol.0901026

    Article  CAS  PubMed  Google Scholar 

  75. Yang H-T, Cohen P, Rousseau S (2008) IL-1beta-stimulated activation of ERK1/2 and p38alpha MAPK mediates the transcriptional up-regulation of IL-6, IL-8 and GRO-alpha in HeLa cells. Cell Signal 20(2):375–380. https://doi.org/10.1016/j.cellsig.2007.10.025

    Article  CAS  PubMed  Google Scholar 

  76. Lee Y-M, Fujikado N, Manaka H et al (2010) IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol 22(10):805–816. https://doi.org/10.1093/intimm/dxq431

    Article  CAS  PubMed  Google Scholar 

  77. Yamazaki M, Kawai M, Miyagawa K et al (2015) Interleukin-1-induced acute bone resorption facilitates the secretion of fibroblast growth factor 23 into the circulation. J Bone Miner Metab 33(3):342–354. https://doi.org/10.1007/s00774-014-0598-2

    Article  CAS  PubMed  Google Scholar 

  78. Brown KK, Heitmeyer SA, Hookfin EB et al (2008) P38 MAP kinase inhibitors as potential therapeutics for the treatment of joint degeneration and pain associated with osteoarthritis. J Inflamm (Lond) 5:22. https://doi.org/10.1186/1476-9255-5-22

    Article  CAS  Google Scholar 

  79. Krementsov DN, Thornton TM, Teuscher C et al (2013) The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 33(19):3728–3734. https://doi.org/10.1128/MCB.00688-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee JK, Kim N-J (2017) Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 22(8):1287. https://doi.org/10.3390/molecules22081287

    Article  CAS  PubMed Central  Google Scholar 

  81. Yong H-Y, Koh M-S, Moon A (2009) The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18(12):1893–1905. https://doi.org/10.1517/13543780903321490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of S. Ross and F. Reipsch.

Funding

This study was supported by the Deutsche Forschungsgemeinschaft [Fo 695/2-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Föller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not required in this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewendt, F., Föller, M. p38MAPK controls fibroblast growth factor 23 (FGF23) synthesis in UMR106-osteoblast-like cells and in IDG-SW3 osteocytes. J Endocrinol Invest 42, 1477–1483 (2019). https://doi.org/10.1007/s40618-019-01073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-01073-y

Keywords

Navigation