Skip to main content
Log in

The efficacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Anaplastic thyroid carcinomas (ATCs) are non-responsive to multimodal therapy, representing one of the major challenges in thyroid cancer. Previously, our group has shown that genes involved in cell cycle are deregulated in ATCs, and the most common mutations in these tumours occurred in cell proliferation and cell cycle related genes, namely TP53, RAS, CDKN2A and CDKN2B, making these genes potential targets for ATCs treatment. Here, we investigated the inhibition of HRAS by tipifarnib (TIP) and cyclin D-cyclin-dependent kinase 4/6 (CDK4/6) by palbociclib (PD), in ATC cells.

Methods

ATC cell lines, mutated or wild type for HRAS, CDKN2A and CDKN2B genes, were used and the cytotoxic effects of PD and TIP in each cell line were evaluated. Half maximal inhibitory concentration (IC50) values were determined for these drugs and its effects on cell cycle, cell death and cell proliferation were subsequently analysed.

Results

Cell culture studies demonstrated that 0.1 µM TIP induced cell cycle arrest in the G2/M phase (50%, p < 0.01), cell death, and inhibition of cell viability (p < 0.001), only in the HRAS mutated cell line. PD lowest concentration (0.1 µM) increased significantly cell cycle arrest in the G0/G1 phase (80%, p < 0.05), but only in ATC cell lines with alterations in CDKN2A/CDKN2B genes; additionally, 0.5 µM PD induced cell death. The inhibition of cell viability by PD was more pronounced in cells with alterations in CDKN2A/CDKN2B genes (p < 0.05) and/or cyclin D1 overexpression.

Conclusions

This study suggests that TIP and PD, which are currently in clinical trials for other types of cancer, may play a relevant role in ATC treatment, depending on the specific tumour molecular profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perri F et al (2011) Anaplastic thyroid carcinoma: a comprehensive review of current and future therapeutic options. World J Clin Oncol 2(3):150–157

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nagaiah G et al (2011) Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol 2011:542358

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pita JM et al (2009) Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer 101(10):1782–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pita JM et al (2014) Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J Clin Endocrinol Metab 99(3):E497–E507

    Article  CAS  PubMed  Google Scholar 

  5. Bible KC, Ryder M (2016) Evolving molecularly targeted therapies for advanced-stage thyroid cancers. Nat Rev Clin Oncol 13(7):403–416

    Article  CAS  PubMed  Google Scholar 

  6. Legakis I, Syrigos K (2011) Recent advances in molecular diagnosis of thyroid cancer. J Thyroid Res 2011:384213

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding H et al (2011) Cytotoxicity of farnesyltransferase inhibitors in lymphoid cells mediated by MAPK pathway inhibition and Bim up-regulation. Blood 118(18):4872–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding H et al (2014) Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells. Haematologica 99(1):60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanaka T et al (2017) Low-dose farnesyltransferase inhibitor suppresses HIF-1alpha and snail expression in triple-negative breast cancer MDA-MB-231 cells in vitro. J Cell Physiol 232(1):192–201

    Article  CAS  PubMed  Google Scholar 

  11. Widemann BC et al (2014) Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer 61(9):1598–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ken S et al (2015) Voxel-based evidence of perfusion normalization in glioblastoma patients included in a phase I–II trial of radiotherapy/tipifarnib combination. J Neurooncol 124(3):465–473

    Article  CAS  PubMed  Google Scholar 

  13. Hong D et al (2008) Medullary thyroid cancer: targeting the RET kinase pathway with sorafenib/tipifarnib. Mol Cancer Ther 7(5):1001–1006

    Article  CAS  PubMed  Google Scholar 

  14. Hong DS et al (2011) Inhibition of the Ras/Raf/MEK/ERK and RET kinase pathways with the combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in medullary and differentiated thyroid malignancies. J Clin Endocrinol Metab 96(4):997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hong DS et al (2009) Phase I trial of a combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in advanced malignancies. Clin Cancer Res 15(22):7061–7068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frasca F et al (2013) Thyroid cancer cell resistance to gefitinib depends on the constitutive oncogenic activation of the ERK pathway. J Clin Endocrinol Metab 98(6):2502–2512

    Article  CAS  PubMed  Google Scholar 

  17. Milosevic Z et al (2014) Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl Res 164(5):411–423

    Article  CAS  PubMed  Google Scholar 

  18. O’Leary B, Finn RS, Turner NC (2016) Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13(7):417–430

    Article  CAS  PubMed  Google Scholar 

  19. Ozenne P et al (2010) The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer 127(10):2239–2247

    Article  CAS  PubMed  Google Scholar 

  20. Roberts PJ et al (2012) Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J Natl Cancer Inst 104(6):476–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fry DW et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427–1438

    CAS  PubMed  Google Scholar 

  22. Williams RT et al (2014) Chimeras of p14ARF and p16: functional hybrids with the ability to arrest growth. PLoS One 9(2):e88219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanaka T et al (2017) The efficacy of the cyclin-dependent kinase 4/6 inhibitor in endometrial cancer. PLoS One 12(5):e0177019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Flaherty KT et al (2012) Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res 18(2):568–576

    Article  CAS  PubMed  Google Scholar 

  25. Leonard JP et al (2012) Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119(20):4597–4607

    Article  CAS  PubMed  Google Scholar 

  26. Dickson MA et al (2016) Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 clinical trial. JAMA Oncol 2(7):937–940

    Article  PubMed  PubMed Central  Google Scholar 

  27. Finn RS et al (2016) Efficacy and safety of palbociclib in combination with letrozole as first-line treatment of ER-positive, HER2-negative, advanced breast cancer: expanded analyses of subgroups from the randomized pivotal trial PALOMA-1/TRIO-18. Breast Cancer Res 18(1):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Finn RS et al (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936

    Article  CAS  PubMed  Google Scholar 

  29. Schweppe RE et al (2008) Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 93(11):4331–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pojo M et al (2015) A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget 6(10):7657–7674

    Article  PubMed  PubMed Central  Google Scholar 

  31. Silva LS et al (2016) STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment. Tumour Biol 37(4):5385–5395

    Article  CAS  PubMed  Google Scholar 

  32. Mruk DD, Cheng CY (2011) Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis 1(2):121–122

    Article  PubMed  PubMed Central  Google Scholar 

  33. Latteyer S et al (2016) Targeted next-generation sequencing for TP53, RAS, BRAF, ALK and NF1 mutations in anaplastic thyroid cancer. Endocrine 54(3):733–741

    Article  CAS  PubMed  Google Scholar 

  34. Cornett WR et al (2007) Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep 9(2):152–158

    Article  PubMed  Google Scholar 

  35. Landa I et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tiedje V et al (2017) NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 8(26):42613–42620

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kunstman JW et al (2015) Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet 24(8):2318–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zujewski J et al (2000) Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 18(4):927–941

    Article  CAS  PubMed  Google Scholar 

  39. Thomas X, Elhamri M (2007) Tipifarnib in the treatment of acute myeloid leukemia. Biologics 1(4):415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Weide K et al (2009) Combining simvastatin with the farnesyltransferase inhibitor tipifarnib results in an enhanced cytotoxic effect in a subset of primary CD34 + acute myeloid leukemia samples. Clin Cancer Res 15(9):3076–3083

    Article  PubMed  Google Scholar 

  41. End DW et al (2001) Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61(1):131–137

    CAS  PubMed  Google Scholar 

  42. Wiedemeyer WR et al (2010) Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc Natl Acad Sci USA 107(25):11501–11506

    Article  PubMed  PubMed Central  Google Scholar 

  43. Konecny GE et al (2011) Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res 17(6):1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Finn RS et al (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the collaboration of the Endocrinology, Pathology and Surgery Departments from Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E. (IPOLFG), Lisboa, Portugal.

Funding

This work was funded by Associação de Endocrinologia Oncológica (AEO) and iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344), which is cofunded by Fundação para a Ciência e Tecnologia/Ministério da Ciência e do Ensino Superior, through national funds, and by FEDER under the PT2020 Partnership Agreement. Marta Pojo was supported by Núcleo Regional Sul da Liga Portuguesa Contra o Cancro (NRS-LPCC). Inês J. Marques was a recipient of a PhD fellowship from the PhD Programme ProRegeM (Mechanisms of Disease and Regenerative Medicine) approved by Fundação para a Ciência e Tecnologia—PD/BD/108086/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Cavaco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethical Committee of Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG). This article does not contain any studies with human subjects or animal experiments performed by any of the authors.

Informed consent

Informed consent was previously obtained from patients to establish in-house derived cell lines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes-Ventura, S., Pojo, M., Matias, A.T. et al. The efficacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines. J Endocrinol Invest 42, 527–540 (2019). https://doi.org/10.1007/s40618-018-0947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-018-0947-4

Keywords

Navigation