Skip to main content
Log in

Seasonal variations in vitamin D in relation to growth in short prepubertal children before and during first year growth hormone treatment

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

This study investigated the relationship between seasonal variations in 25-hydroxyvitamin D (25(OH)D) levels and growth in prepubertal children during both the pretreatment year and the first year of GH treatment.

Methods

The study included 249 short prepubertal children with a broad range of GH secretion, GHmax during a 24 h profile median 23; range 1–127 mU/L, 191 boys (mean age ± SD, 8.6 ± 2.6 years), 58 girls (7.5 ± 1.9 years) receiving GH treatment (mean 43 µg/kg/day; range 17–99 µg/kg/day). Serum 25(OH)D was measured using an automated IDS-iSYS immunoassay.

Results

25(OH)D levels showed seasonal variation, and decreased significantly during GH treatment. 25(OH)D levels at start and first year reduction in 25(OH)D, correlated (−) with the first year growth response during treatment. The degree of GH secretion capacity within our study population of mainly non-GH deficient children and 25(OH)D sufficient (67 ± 29 nmol/L) had no influence on 25(OH)D levels. Growth during GH treatment were independent of seasonal variations in 25(OH)D. Multiple regression analysis showed that 25(OH)D levels at treatment start, together with auxological data and IGF-binding protein-3SDS, explained 61 % of the variation in first year gain in heightSDS.

Conclusion

25(OH)D levels were associated with first year growth response to GH and may be a useful contribution to future growth prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. doi:10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  2. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58. doi:10.1210/jc.2010-2704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Holick MF (2008) Vitamin D: a D-Lightful health perspective. Nutr Rev 66(10 Suppl 2):S182–S194. doi:10.1111/j.1753-4887.2008.00104.x

    Article  PubMed  Google Scholar 

  4. Stamp TC, Round JM (1974) Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature 247(5442):563–565

    Article  CAS  PubMed  Google Scholar 

  5. Kuhn T, Kaaks R, Teucher B, Hirche F, Dierkes J, Weikert C, Katzke V, Boeing H, Stangl GI, Buijsse B (2014) Dietary, lifestyle, and genetic determinants of vitamin D status: a cross-sectional analysis from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany study. Eur J Nutr 53(3):731–741. doi:10.1007/s00394-013-0577-8

    Article  PubMed  Google Scholar 

  6. Toss G, Magnusson P (2012) Vitamin D status: sunshine is nice but other factors prevail. Eur J Nutr 51(2):255–256

    Article  Google Scholar 

  7. Klaus G, Merke J, Eing H, Hugel U, Milde P, Reichel H, Ritz E, Mehls O (1991) 1,25(OH)2D3 receptor regulation and 1,25(OH)2D3 effects in primary cultures of growth cartilage cells of the rat. Calcif Tissue Int 49(5):340–348

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz Z, Schlader DL, Ramirez V, Kennedy MB, Boyan BD (1989) Effects of vitamin D metabolites on collagen production and cell proliferation of growth zone and resting zone cartilage cells in vitro. J Bone Miner Res 4(2):199–207. doi:10.1002/jbmr.5650040211

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz Z, Brooks B, Swain L, Del Toro F, Norman A, Boyan B (1992) Production of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by growth zone and resting zone chondrocytes is dependent on cell maturation and is regulated by hormones and growth factors. Endocrinology 130(5):2495–2504

    CAS  PubMed  Google Scholar 

  10. Gerstenfeld LC, Kelly CM, Von Deck M, Lian JB (1990) Effect of 1,25-dihydroxyvitamin D3 on induction of chondrocyte maturation in culture: extracellular matrix gene expression and morphology. Endocrinology 126(3):1599–1609

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, Sato T, Kawano H, Aihara K, Nakamichi Y, Watanabe T, Shindo M, Inoue K, Inoue E, Tsuji N, Hoshino M, Karsenty G, Metzger D, Chambon P, Kato S, Imai Y (2013) Vitamin d receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154(3):1008–1020. doi:10.1210/en.2012-1542

    Article  CAS  PubMed  Google Scholar 

  12. Nilsson O, Marino R, De Luca F, Phillip M, Baron J (2005) Endocrine regulation of the growth plate. Horm Res 64(4):157–165

    Article  CAS  PubMed  Google Scholar 

  13. Albertsson-Wikland K, Alm F, Aronsson S, Gustafsson J, Hagenas L, Hager A, Ivarsson S, Kristrom B, Marcus C, Moell C, Nilsson KO, Ritzen M, Tuvemo T, Westgren U, Westphal O, Aman J (1999) Effect of growth hormone (GH) during puberty in GH-deficient children: preliminary results from an ongoing randomized trial with different dose regimens. Acta Paediatr Suppl 88(428):80–84

    Article  CAS  PubMed  Google Scholar 

  14. Albertsson-Wikland K, Kristrom B, Lundberg E, Aronson AS, Gustafsson J, Hagenas L, Ivarsson SA, Jonsson B, Ritzen M, Tuvemo T, Westgren U, Westphal O, Aman J (2014) Growth hormone dose-dependent pubertal growth: a randomized trial in short children with low growth hormone secretion. Horm Res Paediatr 82(3):158–170. doi:10.1159/000363106

    Article  CAS  PubMed  Google Scholar 

  15. Albertsson-Wikland K, Aronson AS, Gustafsson J, Hagenas L, Ivarsson SA, Jonsson B, Kristrom B, Marcus C, Nilsson KO, Ritzen EM, Tuvemo T, Westphal O, Aman J (2008) Dose-dependent effect of growth hormone on final height in children with short stature without growth hormone deficiency. J Clin Endocrinol Metab 93(11):4342–4350

    Article  CAS  PubMed  Google Scholar 

  16. Gelander L, Karlberg J, Albertsson-Wikland K (1994) Seasonality in lower leg length velocity in prepubertal children. Acta Paediatr 83(12):1249–1254

    Article  CAS  PubMed  Google Scholar 

  17. Land C, Blum WF, Stabrey A, Schoenau E (2005) Seasonality of growth response to GH therapy in prepubertal children with idiopathic growth hormone deficiency. Eur J Endocrinol 152(5):727–733. doi:10.1530/eje.1.01899

    Article  CAS  PubMed  Google Scholar 

  18. Shulman DI, Frane J, Lippe B (2013) Is there “seasonal” variation in height velocity in children treated with growth hormone? Data from the national cooperative growth study. Int J Pediatr Endocrinol 1:2. doi:10.1186/1687-9856-2013-2

    Article  Google Scholar 

  19. Kristrom B, Aronson AS, Dahlgren J, Gustafsson J, Halldin M, Ivarsson SA, Nilsson NO, Svensson J, Tuvemo T, Albertsson-Wikland K (2009) Growth hormone (GH) dosing during catch-up growth guided by individual responsiveness decreases growth response variability in prepubertal children with GH deficiency or idiopathic short stature. J Clin Endocrinol Metab 94(2):483–490

    Article  PubMed  Google Scholar 

  20. Albertsson-Wikland K, Kristrom B, Rosberg S, Svensson B, Nierop AF (2000) Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr Res 48(4):475–484

    Article  CAS  Google Scholar 

  21. Bodnar LM, Catov JM, Wisner KL, Klebanoff MA (2009) Racial and seasonal differences in 25-hydroxyvitamin D detected in maternal sera frozen for over 40 years. Br J Nutr 101(2):278–284. doi:10.1017/S0007114508981460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Karlberg J (1989) On the construction of the infancy-childhood-puberty growth standard. Acta Paediatr Scand Suppl 356:26–37

    Article  CAS  PubMed  Google Scholar 

  23. Albertsson-Wikland K, Luo ZC, Niklasson A, Karlberg J (2002) Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference. Acta Paediatr 91(7):739–754

    Article  Google Scholar 

  24. Niklasson A, Albertsson-Wikland K (2008) Continuous growth reference from 24th week of gestation to 24 months by gender. BMC Pediatr 8:8. doi:10.1186/1471-2431-8-8

    Article  PubMed Central  PubMed  Google Scholar 

  25. Karlberg J, Luo ZC, Albertsson-Wikland K (2001) Body mass index reference values (mean and SD) for Swedish children. Acta Paediatr 90(12):1427–1434

    Article  CAS  PubMed  Google Scholar 

  26. Luo ZC, Albertsson-Wikland K, Karlberg J (1998) Target height as predicted by parental heights in a population-based study. Pediatr Res 44(4):563–571

    Article  CAS  PubMed  Google Scholar 

  27. Penny R, Blizzard RM, Davis WT (1969) Sequential arginine and insulin tolerance tests on the same day. J Clin Endocrinol Metab 29(11):1499–1501. doi:10.1210/jcem-29-11-1499

    Article  CAS  PubMed  Google Scholar 

  28. Albertsson-Wikland K, Rosberg S (1988) Analyses of 24 hour growth hormone profiles in children: relation to growth. J Clin Endocrinol Metab 67(3):493–500

    Article  CAS  PubMed  Google Scholar 

  29. Jansson C, Boguszewski C, Rosberg S, Carlsson L, Albertsson-Wikland K (1997) Growth hormone (GH) assays: influence of standard preparations, GH isoforms, assay characteristics, and GH-binding protein. Clin Chem 43(6 Pt 1):950–956

    CAS  PubMed  Google Scholar 

  30. Le Goff C, Peeters S, Crine Y, Lukas P, Souberbielle JC, Cavalier E (2012) Evaluation of the cross-reactivity of 25-hydroxyvitamin D2 on seven commercial immunoassays on native samples. Clin Chem Lab Med 50(11):2031–2032. doi:10.1515/cclm-2012-0164

    PubMed  Google Scholar 

  31. Löfqvist C, Andersson E, Gelander L, Rosberg S, Blum WF, Albertsson-Wikland K (2001) Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. J Clin Endocrinol Metab 86(12):5870–5876

    Article  PubMed  Google Scholar 

  32. Lofqvist C, Andersson E, Gelander L, Rosberg S, Hulthen L, Blum WF, Wikland KA (2005) Reference values for insulin-like growth factor-binding protein-3 (IGFBP-3) and the ratio of insulin-like growth factor-I to IGFBP-3 throughout childhood and adolescence. J Clin Endocrinol Metab 90(3):1420–1427

    Article  PubMed  Google Scholar 

  33. Wei S, Tanaka H, Kubo T, Ono T, Kanzaki S, Seino Y (1997) Growth hormone increases serum 1,25-dihydroxyvitamin D levels and decreases 24,25-dihydroxyvitamin D levels in children with growth hormone deficiency. Eur J Endocrinol 136(1):45–51

    Article  CAS  PubMed  Google Scholar 

  34. Saggese G, Baroncelli GI, Bertelloni S, Cinquanta L, Di Nero G (1993) Effects of long-term treatment with growth hormone on bone and mineral metabolism in children with growth hormone deficiency. J Pediatr 122(1):37–45

    Article  CAS  PubMed  Google Scholar 

  35. Ciresi A, Ciccio F, Giordano C (2014) High prevalence of hypovitaminosis D in Sicilian children affected by growth hormone deficiency and its improvement after 12 months of replacement treatment. J Endocrinol Invest 37(7):631–638. doi:10.1007/s40618-014-0084-7

    Article  CAS  PubMed  Google Scholar 

  36. Hypponen E, Fararouei M, Sovio U, Hartikainen AL, Pouta A, Robertson C, Whittaker JC, Jarvelin MR (2011) High-dose vitamin D supplements are not associated with linear growth in a large Finnish cohort. J Nutr 141(5):843–848. doi:10.3945/jn.110.133009

    Article  CAS  PubMed  Google Scholar 

  37. Hochberg Z (2003) Vitamin D and Rickets. S Karger AG, Basel

    Book  Google Scholar 

  38. Bellone S, Esposito S, Giglione E, Genoni G, Fiorito C, Petri A, Bona G, Prodam F (2014) Vitamin D levels in a paediatric population of normal weight and obese subjects. J Endocrinol Invest 37(9):805–809. doi:10.1007/s40618-014-0108-3

    Article  CAS  PubMed  Google Scholar 

  39. Holick MF, Schnoes HK, DeLuca HF, Gray RW, Boyle IT, Suda T (1972) Isolation and identification of 24,25-dihydroxycholecalciferol, a metabolite of vitamin D made in the kidney. Biochemistry 11(23):4251–4255

    Article  CAS  PubMed  Google Scholar 

  40. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930. doi:10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  41. Bailey D, Colantonio D, Kyriakopoulou L, Cohen AH, Chan MK, Armbruster D, Adeli K (2013) Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem 59(9):1393–1405. doi:10.1373/clinchem.2013.204222

    Article  CAS  PubMed  Google Scholar 

  42. Franchi B, Piazza M, Sandri M, Tenero L, Comberiati P, Boner AL, Capristo C (2014) 25-hydroxyvitamin D serum level in children of different ethnicity living in Italy. Eur J Pediatr. doi:10.1007/s00431-014-2451-y

    Google Scholar 

  43. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, Tamez H, Zhang D, Bhan I, Karumanchi SA, Powe NR, Thadhani R (2013) Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med 369(21):1991–2000. doi:10.1056/NEJMoa1306357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful for skilled laboratory work by Lisbeth Larsson, fruitful discussions with Dagmar Kasper (IDS) and language editing by Harriet Crofts. We thank IDS for providing free reagents for 25(OH)D measurements. The authors also thank the investigators and their teams of all the clinical trials for taking care of the children and families. These investigator-initiated and sponsored studies (TRN 88-080; TRN 88-177; TRN 89-071; TRN 98-0198-003) were supported by unrestricted research grants from Pharmacia/Pfizer, the Swedish Research Council grant no 7509, the Wilhelm & Martina Lundgrens Foundation, Wera Ekströms Foundation for Pediatric Research, the Foundation Växthuset for Children, Sahlgrenska University Hospital (ALF), West Sweden Region (VGR) grants, and the County Council of Östergötland. The only funding institution was Göteborg Pediatric Growth Research Center, Department of Pediatrics, Institute of Clinical Sciences, as well as Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Andersson.

Ethics declarations

Conflict of interest

BA, DSE, LG and PM have no conflicting interests to declare. BK has received lecture and consultation honoraria from Novo Nordisk, Pfizer and Sandoz. KAW, the sponsor of all the trials, received an unrestricted research grant from Pharmacia/Pfizer until 2005.

Ethical approval

The protocols of the clinical trials (TRN 88-080; TRN 88-177; TRN 89-071; TRN 98-0198-003) were approved by the ethical boards of the Universities of Gothenburg (for children from Gothenburg and Halmstad) and the Medical Product Agency of Sweden. TRN 98-0198-003 was also approved by the ethical boards of Universities of Umeå, Uppsala and Malmö, and TRN 88-080 and TRN 88-177 were also approved by the ethical board of the Karolinska Institutet. These approvals included ‘serum markers of bone metabolism’.

Informed consent

Written informed consent was obtained from all parents and from children if old enough. The trials were performed in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, B., Swolin-Eide, D., Kriström, B. et al. Seasonal variations in vitamin D in relation to growth in short prepubertal children before and during first year growth hormone treatment. J Endocrinol Invest 38, 1309–1317 (2015). https://doi.org/10.1007/s40618-015-0360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0360-1

Keywords

Navigation