Skip to main content
Log in

1,25(OH)2D3 receptor regulation and 1,25(OH)2D3 effects in primary cultures of growth cartilage cells of the rat

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Vitamin D deficiency leads to disturbed calcification of growth cartilage and enlargement of growth plate, illustrating that chondrocytes are a target for vitamin D. This observation prompted an investigation of 1,25(OH)2D3 receptor expression and action of vitamin D metabolites on chondrocyte proliferation. In primary cultures of tibial growth cartilage of male SD rats (80 g), specific binding of [3H]-1,25(OH)2D3 is noted in both the logarithmic growth phase and at confluence (Nmax 12780 molecules/cell versus 4368 molecules/cell). Scatchard analysis revealed the presence of a single class of noninteracting binding sites. KD was 10−11 M irrespective of growth phase. The binding macromolecule had a sedimentation coefficient of 3.5 S. Interaction with DNA was demonstrated by DNA cellulose affinity chromatography. In immunohistology, growth cartilage cells (rabbit tibia) expressed nuclear 1,25(OH)2D3 receptors most prominently in the proliferative and hypertrophic zone. This corresponds to binding data which showed highest Nmax in the proliferating cartilage. 1,25(OH)2D3 in the presence of delipidated fetal calf serum (FCS) had a biphasic effect on cell proliferation and density, i.e., stimulation at 10−12 M and dose-dependent inhibition at 10−10 M and below. Inhibition was specific and not seen with 24,25(OH)2D3 or dexamethasone. Growth phase-dependent 1,25(OH)2D3 receptor expression and effects of 1,25(OH)2D3 on chondrocyte proliferation point to a role of vitamin D in the homeostasis of growth cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suda S, Takahashi N, Shinki T, Yamaguchi A, Yoshiki S, Suda T (1985) 1α,25-dihydroxyvitamin D receptors and their action in embryonic chick chondrocytes. Calcif Tissue Int 37:82–90

    PubMed  CAS  Google Scholar 

  2. Takigawa M, Enomoto M, Shiral E, Nishii Y, Suzuki F (1988) Differential effects of 1α,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol on the proliferation and the differentiated phenotype of rabbit costal chondrocytes in culture. Endocrinology 122:831–839

    PubMed  CAS  Google Scholar 

  3. Silbermann M, Von Der mark K, Mirsky N, Von Menxel M, Lewinson D (1987) Effects of increased doses of 1,25-dihydroxyvitamin D3 on matrix and DNA synthesis in condylar cartilage of suckling mice, Calcif Tissue Int 41:95–104

    Article  PubMed  CAS  Google Scholar 

  4. Silbermann M, Mirsky N, Levitan S, Weisman Y (1983) The effect of 1,25-dihydroxyvitamin D3 on cartilage growth in neonatal mice. Metab Bone Dis Rel Res 4:337–345

    CAS  Google Scholar 

  5. Binderman I, Soemjen D (1984) 24,25-dihydroxycholecalciferol induces growht of chick cartilage in vitro, Endocrinology 115:430–432

    PubMed  CAS  Google Scholar 

  6. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes re-express the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  PubMed  CAS  Google Scholar 

  7. Lindahl A, Isgaard J, Carlsson L, Isaksson OGP (1987) Differential effects of growth hormone and insulin-like growth factor 1 on colony formation of epiphyseal chondrocytes in suspension culture in rats of different ages. Endocrinology 121:1061–1069

    PubMed  CAS  Google Scholar 

  8. Merke J, Schwittay D, Fürstenberger G, Gross M, Marks F, Ritz E (1985) Demonstration and characterisation of 1,25(OH)2D3 receptors in basal cells of neonatal and adult mice. Calcif Tissue Int 37:257–267

    PubMed  CAS  Google Scholar 

  9. Pfeilstifter J, D'Souza SM, Mundy GR (1987) Effects of transforming growth factor-β on osteoblastic osteosarcoma cells. Endocrinology 121:212–218

    Google Scholar 

  10. Merke J, Klaus G, Hügel U, Waldherr R, Ritz E (1986) No 1,25-dihydroxyvitamin D3 receptors on osteoclasts of calcium-deficient chicken despite demonstrable receptors on circulating monocytes. J Clin Invest 77:312–314

    PubMed  CAS  Google Scholar 

  11. Merke J, Milde P, Lewicka S, Hügel U, Klaus G, Mangelsdorf DJ, Haussler MR, Rauterberg EW, Ritz E (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 83:1903–1915

    PubMed  CAS  Google Scholar 

  12. Wecksler WR, Norman AW (1979) A hydroxylapatite batch assay for the quantitation of 1,25-dihydroxyvitamin D3 receptor complexes. Anal Biochem 92:314–323

    Article  PubMed  CAS  Google Scholar 

  13. Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51:660–671

    Article  CAS  Google Scholar 

  14. Alberts B, Herrik G (1971) DNA cellulose chromatography. Methods Enzymol 21:198–217

    Article  CAS  Google Scholar 

  15. Bligh G, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  16. Reichel H, Bishop JE, Koeffler HP, Norman AW (1987) 25-hydroxyvitamin D3 metabolism by lipopolysaccaride-stimulated normal human macrophages. J Clin Endocrinol Metab 64:1–9

    PubMed  CAS  Google Scholar 

  17. Reichel H, Koeffler HP, Norman AW (1987) Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by interferon-τ-stimulated normal human bone marrow and alveolar macrophages. J Biol Chem 262:10931–10937

    PubMed  CAS  Google Scholar 

  18. Pike JW, Donaldson CA, Marion SL, Haussler MR (1982) Development of hybridomas secreting monoclonal antibodies to the chicken intestinal 1α,25-dihydroxyvitamin D3 receptor. Biochemistry 79:7719–7723

    CAS  Google Scholar 

  19. Pike JW, Marion SL, Donaldson CA, Haussler MR (1983) Serum and monoclonal antibodies against the chick intestinal receptor for 1,25-dihydroxyvitamin D3. J Biol Chem 258:1289–1296

    PubMed  CAS  Google Scholar 

  20. Pike JW (1984) Monoclonal antibodies to chick intestinal receptors for 1,25-dihydroxyvitamin D3: interaction and effects of binding on receptor function. J Biol Chem 259:1167–1173

    PubMed  CAS  Google Scholar 

  21. Milde P, Merke J, Ritz E, Haussler MR, Rauterberg EW (1989) Immunohistochemical detection of 1,25-dihydroxyvitamin D3 receptors by monoclonal antibodies: comparison of four immunoperoxidase methods. J Histochem Cytochem 37:1609–1617

    PubMed  CAS  Google Scholar 

  22. Chen TI, Feldman D (1981) Regulation of 1,25(OH)2D3 receptors in cultured mouse bone cells. Correlation of receptor concentration with the rate of cell division. J Biol Chem 256:5561–5566

    PubMed  CAS  Google Scholar 

  23. Freake HL, Marcocci C, Iwasaki J, MacIntyre I (1981) 1,25-dihydroxyvitamin D3 specifically binds to a human breast cancer cell line (T47D) and stimulates growth. Biochem Biophys Res Commun 101:1131–1138

    Article  PubMed  CAS  Google Scholar 

  24. Pillai S, Bikle DD, Elias PM (1988) 1,25-dihydroxyvitamin D production and receptor binding in human keratinocytes varies with differentiation. J Biol Chem 263:5390–5395

    PubMed  CAS  Google Scholar 

  25. Mangelsdorf DJ, Koeffler HP, Donaldson CA, Pike JW, Haussler MR (1984) 1,25-dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): receptor-mediated maturation to macrophage-like cells. J Cell Biol 98:391–398

    Article  PubMed  CAS  Google Scholar 

  26. Chen TL, Huschka PV, Cabrales S, Feldman D (1986) The effects of 1,25-dihydroxyvitamin D3 and dexamethasone on rat osteoblast-like primary cell cultures: receptor occupancy and functional expression patterns for three different bioresponses. Science 235:250–259

    Google Scholar 

  27. Pols HAP, Birkenhäger JC, Schilte JP, Visser TJ (1988) Evidence that the self-induced metabolism of 1,25-dihydroxyvitamin D3 limits the homologous up-regulation of its receptor in rat osteosarcoma cells. Biochem Biophys Acta 970:122–129

    Article  PubMed  CAS  Google Scholar 

  28. Reinhardt TA, Horst RL (1989) Self-induction of 1,25-dihydroxyvitamin D3 metabolism limits receptor occupancy and target tissue responsiveness. J Biol Chem 264:15917–15921

    PubMed  CAS  Google Scholar 

  29. Suda T, Abe E, Miyaura C, Tanaka H, Shiina Y, Hayashi T, Nagasawa H, Chida K, Hashiba H, Fukushima M, Nishii Y, Kuroki T (1985) Modulation of cell differentiation and tumor promotion by 1,25-dihydroxyvitamin D3. In: Norman AW, Schaefer K, Grigoleit H-G, Herrath DV (eds) Vitamin D: chemical, biochemical and clinical update. Walter de Gruyter, Berlin pp. 187–196

    Google Scholar 

  30. Skjodt H, Gallagher JA, Beresford JN, Couch M, Poser JW, Russel RGG (1984) Vitamin D metabolites regulate osteocalcin synthesis and proliferation of human bone cells in vitro. J Endocrinol 105:391–396

    Article  Google Scholar 

  31. Barsonav J, McKoy W, DeGrange DA, Liberman UA, Marx SJ (1989) Selective expression of a normal action of 1,25-dihydroxyvitamin D receptor in human skin fibroblasts with hereditary severe defects in multiple actions of that receptor. J Clin Invest 83:2039–2101

    Google Scholar 

  32. Von Der Mark K, Gauss V, Von Der Mark H, Müller P (1977) Relationship between cell shape and type of collagen synthesized as chondrocytes lose their phenotype in culture. Nature 267:531–532

    Article  PubMed  Google Scholar 

  33. Schwartz Z, Boyan B (1988) The effects of vitamin D metabolites on phospholipase A2 activity of growth zone and resting zone cartilage cells in vitro. Endocrinology 122:2191–2197

    Article  PubMed  CAS  Google Scholar 

  34. Harmand MF, Thomasset M, Rouais F, Ducassou D (1984) In vitro stimulation of articular chondrocyte differentiated function by 1,25-dihydroxycholecalciferol or 24R,25-dihydroxycholecalciferol. J Cell Physiol 119:359–365

    Article  PubMed  CAS  Google Scholar 

  35. Soemjen D, Earson Y, Harell S, Shimshoni Z, Weisman Y, Harell A, Kaye AM, Binerman I (1987) Developmental changes in responsiveness to vitamin D metabolites. J Steroid Biochem 27:807–813

    Article  Google Scholar 

  36. Corvol MT, Dumontier MF, Garabedian M, Rappaport R (1978) Vitamin D and cartilage. II. Biological activity of 25-hydroxycholecalciferol and 24,25- and 1,25-dihydroxycholecalciferols on cultured growth plate chondrocytes. Endocrinology 102:1269–1274

    Article  CAS  Google Scholar 

  37. Corvol M, Uimann U, Garabedian M (1980) Specific nuclear uptake of 24,25-dihydroxycholecalciferol, a Vitamin D metabolite biologically active in cartilage. FEBS Lett 116:273–276

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaus, G., Merke, J., Eing, H. et al. 1,25(OH)2D3 receptor regulation and 1,25(OH)2D3 effects in primary cultures of growth cartilage cells of the rat. Calcif Tissue Int 49, 340–348 (1991). https://doi.org/10.1007/BF02556257

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556257

Key words

Navigation