Skip to main content

Advertisement

Log in

Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course

  • Synthetic Chemicals and Health (J Herbstman and T James-Todd, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review discusses the sex-specific effects of exposure to various organophosphate (OP) pesticides throughout the life course and potential reasons for the differential vulnerabilities observed across sexes.

Recent Findings

Sex is a crucial factor in the response to toxicants, yet the sex-specific effects of OP exposure, particularly in juveniles and adults, remain unresolved. This is largely due to study design and inconsistencies in exposure and outcome assessments.

Summary

Exposure to OPs results in multiple adverse outcomes influenced by many factors including sex. Reported sex-specific effects suggest that males are more susceptible to OPs, which reflects the sex-dependent prevalence of various neurodevelopmental and neurodegenerative disorders such as autism and amyotrophic lateral sclerosis (ALS), in which males are at greater risk. Thus, this review proposes that the biological sex-specific effects elicited by OP exposure may in part underlie the dimorphic susceptibilities observed in neurological disorders. Understanding the immediate and long-term effects of OP exposure across sexes will be critical in advancing our understanding of OP-induced neurotoxicity and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wizemann TM, Pardue ML, editors. Institute of Medicine (U.S.) Committee on understanding the biology of sex and gender differences. Exploring the biological contributions to human health: does sex matter? Washington, D.C.: National Academy Press; 2001. https://doi.org/10.17226/10028.

  2. Weiss B. Same sex, no sex, and unaware sex in neurotoxicology. Neurotoxicology. 2011;32(5):509–17. https://doi.org/10.1016/j.neuro.2010.09.005.

    Article  PubMed  Google Scholar 

  3. Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, et al. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci. 2012;109(20):7871–6. https://doi.org/10.1073/pnas.1203396109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol. 2017;91(2):549–99.

    Article  CAS  PubMed  Google Scholar 

  5. Malek AM, Barchowsky A, Bowser R, Heiman-Patterson T, Lacomis D, Rana S, et al. Environmental and occupational risk factors for amyotrophic lateral sclerosis: a case-control study. Neurodegener Dis. 2014;14(1):31–8. https://doi.org/10.1159/000355344.

    Article  CAS  PubMed  Google Scholar 

  6. Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B. Paraoxonase 1 (PON1), agricultural organophosphate exposure, and Parkinson disease. Epidemiology. 2010;21(1):87–94. https://doi.org/10.1097/EDE.0b013e3181c15ec6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33(5):947–71. https://doi.org/10.1016/j.neuro.2012.05.011.

    Article  CAS  PubMed  Google Scholar 

  8. Yan D, Zhang Y, Liu L, Yan H. Pesticide exposure and risk of Alzheimer’s disease: a systematic review and meta-analysis. Sci Rep. 2016;6:32222. https://doi.org/10.1038/srep32222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayden KM, Norton MC, Darcey D, Ostbye T, Zandi PP, Breitner JCS, et al. Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology. 2010;74(19):1524–30. https://doi.org/10.1212/WNL.0b013e3181dd4423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Terry AV. Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther. 2012;134(3):355–65. https://doi.org/10.1016/j.pharmthera.2012.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atwood D, Paisley-Jones C. Pesticides industry sales and usage: 2008-2012 market estimates. Biological and Economic Analysis Division. Office of Pesticide Programs. Office of Chemical Safety and Pollution Prevention. Washington, D.C.: U.S. Environmental Protection Agency. 2017;1-24.

  12. Britton W, Drew D, Holman E, Lowe K, Lowit A, Tan C, et al. Memorandum. Chlorpyrifos: Revised human health risk assessment for registration review. United States Environmental Protection Agency. Office of Chemical Safety and Pollution Prevention. Washington, D.C.;2016.

  13. Barr DB, Allen R, Olsson AO, Bravo R, Caltabiano LM, Montesano A, et al. Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environ Res. 2005;99(3):314–26.

    Article  CAS  PubMed  Google Scholar 

  14. Nolan RJ, Rick DL, Freshour NL, Saunders JH. Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol. 1984;73:8–15.

    Article  CAS  PubMed  Google Scholar 

  15. Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol. 2008;38:1–125. https://doi.org/10.1080/10408440802272158.

    Article  CAS  PubMed  Google Scholar 

  16. Costa LG. Current issues in organophosphate toxicology. Clin Chim Acta. 2006;366:1–13.

    Article  CAS  PubMed  Google Scholar 

  17. Satoh T. Global epidemiology of organophosphate and carbamate poisonings. In: Toxicology of organophosphate carbamate compounds. Amsterdam: Elsevier Academic Press; 2006. p. 89–100. https://doi.org/10.1016/B978-012088523-7/50009-0.

    Chapter  Google Scholar 

  18. Peter J, Sudarsan T, Moran J. Clinical features of organophosphate poisoning: a review of different classification systems and approaches. Indian J Crit Care Med. 2014;18:805.

    Article  Google Scholar 

  19. • Voorhees JR, Rohlman DS, Lein PJ, Pieper AA. Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds. Front Neurosci. 2017;10:590. https://doi.org/10.3389/fnins.2016.00590. A comprehensive review of preclinical models of occupational exposure

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bradman A, Whyatt RM. Characterizing exposures to nonpersistent pesticides during pregnancy and early childhood in the National Children’s Study: a review of monitoring and measurement methodologies. Environ Health Perspect. 2005;113(8):1092–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levin ED, Addy N, Baruah A, Elias A, Christopher NC, Seidler FJ, et al. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol. 2002;24(6):733–41.

    Article  CAS  PubMed  Google Scholar 

  22. Furlong CE, Holland N, Richter RJ, Bradman A, Ho A, Eskenazi B. PON1 status of farmworker mothers and children as a predictor of organophosphate sensitivity. Pharmacogenet Genomics. 2006;16:183–90.

    CAS  PubMed  Google Scholar 

  23. Meister JS. The health of migrant farm workers. Occup Med. 1990;6:503–18.

    Google Scholar 

  24. Rohlman DS, Ismail AA, Rasoul GA, Bonner MR, Hendy O, Mara K, et al. A 10-month prospective study of organophosphorus pesticide exposure and neurobehavioral performance among adolescents in Egypt. Cortex. 2016;74:383–95. https://doi.org/10.1016/j.cortex.2015.09.011.

    Article  PubMed  Google Scholar 

  25. Malek AM, Barchowsky A, Bowser R, Youk A, Talbott EO. Pesticide exposure as a risk factor for amyotrophic lateral sclerosis: a meta-analysis of epidemiological studies: Pesticide exposure as a risk factor for ALS. Environ Res. 2012;117:112–9. https://doi.org/10.1016/j.envres.2012.06.007.

    Article  CAS  PubMed  Google Scholar 

  26. Malekirad AA, Faghih M, Mirabdollahi M, Kiani M, Fathi A, Abdollahi M. Neurocognitive, mental health, and glucose disorders in farmers exposed to organophosphorus pesticides. Arch Ind Hyg Toxicol. 2013;64(1):1–8.

    Article  CAS  Google Scholar 

  27. Muñoz-Quezada MT, Lucero BA, Iglesias VP, Muñoz MP, Cornejo CA, Achu E, et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review. Int J Occup Environ Health. 2016;22(1):68–79. https://doi.org/10.1080/10773525.2015.1123848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sánchez-Santed F, Colomina MT, Herrero HE. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417–26. https://doi.org/10.1016/j.cortex.2015.10.003.

    Article  PubMed  Google Scholar 

  29. McCarthy MM, Nugent BM, Lenz KM. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat Rev Neurosci. 2017;18:471-484. https://doi.org/10.1038/nrn.2017.61.

  30. De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ, et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci. 2002;22(20):9005–14.

    PubMed  Google Scholar 

  31. Arnold AP, Xu J, Grisham W, Chen X, Kim YH, Itoh Y. Minireview: sex chromosomes and brain sexual differentiation. Endocrinology. 2004;145(3):1057–62.

    Article  CAS  PubMed  Google Scholar 

  32. Rice D, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108:511–33.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Young JG, Eskenazi B, Gladstone EA, Bradman A, Pedersen L, Johnson C, et al. Association between in utero organophosphate pesticide exposure and abnormal reflexes in neonates. Neurotoxicology. 2005;26(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  34. Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ, et al. Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol. 2007;165(12):1397–404.

    Article  PubMed  Google Scholar 

  35. Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, et al. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect. 2007;115:792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, et al. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics. 2006;118(6):e1845–59.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect. 2011;119(8):1189–95. https://doi.org/10.1289/ehp.1003185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, et al. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect. 2011;119(8):1182–8. https://doi.org/10.1289/ehp.1003183.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common seven-year neurodevelopmental dcores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119(8):1196–201. https://doi.org/10.1289/ehp.1003160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marks AR, Harley K, Bradman A, Kogut K, Barr DB, Johnson C, et al. Organophosphate pesticide exposure and attention in young Mexican-American children: the CHAMACOS Study. Environ Health Perspect. 2010;118(12):1768–74. https://doi.org/10.1289/ehp.1002056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics. 2010;125(6):e1270–7. https://doi.org/10.1542/peds.2009-3058.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. Environ Int. 2017;99:55–77. https://doi.org/10.1016/j.envint.2016.11.019. A thorough review discussing developmental neurotoxicity in human and preclinical models from organochlorines to neonicotinoids

    Article  PubMed  CAS  Google Scholar 

  43. Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology. 2013;39:158–68. https://doi.org/10.1016/j.neuro.2013.09.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jurewicz J, Hanke W. Prenatal and childhood exposure to pesticides and neurobehavioral development: review of epidemiological studies. Int J Occup Med Environ Health. 2008;21(2):121–32. https://doi.org/10.2478/v10001-008-0014-z.

    Article  PubMed  Google Scholar 

  45. Harari R, Julvez J, Murata K, Barr D, Bellinger DC, Debes F, et al. Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environ Health Perspect. 2010;118(6):890–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gochfeld M. Framework for gender differences in human and animal toxicology. Environ Res. 2007;104(1):4–21.

    Article  CAS  PubMed  Google Scholar 

  47. Kongtip P, Techasaensiri B, Nankongnab N, Adams J, Phamonphon A, Surach A, et al. The impact of prenatal organophosphate pesticide exposures on Thai infant neurodevelopment. Int J Environ Res Public Health. 2017;14(570): 1-12.https://doi.org/10.3390/ijerph14060570.

  48. Lizardi PS, O’Rourke MK, Morris RJ. The effects of organophosphate pesticide exposure on Hispanic children’s cognitive and behavioral functioning. J Pediatr Psychol. 2008;33(1):91–101.

    Article  PubMed  Google Scholar 

  49. Pastor PN, Reuben CA. Diagnosed attention deficit hyperactivity disorder and learning disability: United States, 2004-2006. Vital Health Statistics. 2008;10(237):1–14.

    Google Scholar 

  50. Fortenberry GZ, Meeker JD, Sánchez BN, Barr DB, Panuwet P, Bellinger D, et al. Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: distribution, temporal variability, and relationship with child attention and hyperactivity. Int J Hyg Environ Health. 2014;217(2–3):405–12. https://doi.org/10.1016/j.ijheh.2013.07.018.

    Article  CAS  PubMed  Google Scholar 

  51. Horton MK, Kahn LG, Perera F, Barr DB, Rauh V. Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory? Neurotoxicol Teratol. 2012;34(5):534–41. https://doi.org/10.1016/j.ntt.2012.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dworzynski K, Ronald A, Bolton P, Happé F. How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J Am Acad Child Adolesc Psychiatry. 2012;51(8):788–97. https://doi.org/10.1016/j.jaac.2012.05.018.

    Article  PubMed  Google Scholar 

  53. • Furlong MA, Engel SM, Barr DB, Wolff MS. Prenatal exposure to organophosphate pesticides and reciprocal social behavior in childhood. Environ Int. 2014;70:125–31. https://doi.org/10.1016/j.envint.2014.05.011. This study detects a sex-specific association between DEP metabolites and adverse social responses in boys

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Millenson ME, Braun JM, Calafat AM, Barr DB, Huang YT, Chen A, et al. Urinary organophosphate insecticide metabolite concentrations during pregnancy and children’s interpersonal, communication, repetitive, and stereotypic behaviors at 8 years of age: the home study. Environ Res. 2017;157:9–16. https://doi.org/10.1016/j.envres.2017.05.008.

    Article  CAS  PubMed  Google Scholar 

  55. Rauh VA, Garcia WE, Whyatt RM, Horton MK, Barr DB, Louis ED. Prenatal exposure to the organophosphate pesticide chlorpyrifos and childhood tremor. Neurotoxicology. 2015;51:80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silver MK, Shao J, Zhu B, Chen M, Xia Y, Kaciroti N, et al. Prenatal naled and chlorpyrifos exposure is associated with deficits in infant motor function in a cohort of Chinese infants. Environ Int. 2017; https://doi.org/10.1016/j.envint.2017.05.015.

  57. Zhang Y, Han S, Liang D, Shi X, Wang F, Liu W, et al. Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: a birth cohort study in Shenyang. China PLoS One. 2014;9(2):e88491. https://doi.org/10.1371/journal.pone.0088491.

    Article  PubMed  CAS  Google Scholar 

  58. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10(5):615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron. 2014;81(5):1001–8. https://doi.org/10.1016/j.neuron.2014.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Merwin SJ, Obis T, Nunez Y, Re DB. Organophosphate neurotoxicity to the voluntary motor system on the trail of environment-caused amyotrophic lateral sclerosis: the known, the misknown, and the unknown. Arch Toxicol. 2017;91(8):2939-2952. https://doi.org/10.1007/s00204-016-1926-1.

  61. •• Astiz M, Acaz-Fonseca E, Garcia-Segura LM. Sex differences and effects of estrogenic compounds on the expression of inflammatory molecules by astrocytes exposed to the insecticide dimethoate. Neurotox Res. 2014;25:271–85. This is the only in vitro study to our knowledge that reports sex-specific effects of insecticide exposure

    Article  CAS  PubMed  Google Scholar 

  62. Astiz M, De Alaniz MJ, Marra CA. Antioxidant defense system in rats simultaneously intoxicated with agrochemicals. Environ Toxicol Pharmacol. 2009;28(3):465–73. https://doi.org/10.1016/j.etap.2009.07.009.

    Article  CAS  PubMed  Google Scholar 

  63. Astiz M, De Alaniz MJ, Marra CA. Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicol Environ Saf. 2009;72(7):2025–32. https://doi.org/10.1016/j.ecoenv.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  64. Venerosi A, Ricceri L, Tait S, Calamandrei G. Sex dimorphic behaviors as markers of neuroendocrine disruption by environmental chemicals: the case of chlorpyrifos. Neurotoxicology. 2012;33(6):1420–6. https://doi.org/10.1016/j.neuro.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  65. Meyer A, Seidler FJ, Aldridge JE, Tate CA, Cousins MM, Slotkin TA. Critical periods for chlorpyrifos-induced developmental neurotoxicity: alterations in adenylyl cyclase signaling in adult rat brain regions after gestational or neonatal exposure. Environ Health Perspect. 2004;112:295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Aldridge JE, Seidler FJ, Slotkin TA. Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling. Environ Health Perspect. 2004;112:148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Slotkin TA, Seidler FJ. Prenatal chlorpyrifos exposure elicits presynaptic serotonergic and dopaminergic hyperactivity at adolescence: critical periods for regional and sex-selective effects. Reprod Toxicol. 2007;23:421–7.

    Article  CAS  PubMed  Google Scholar 

  68. Johnson FO, Chambers JE, Nail CA, Givaruangsawat S, Carr RL. Developmental chlorpyrifos and methyl parathion exposure alters radial-arm maze performance in juvenile and adult rats. Toxicol Sci. 2009;109:132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gómez-Giménez B, Llansola M, Hernández-Rabaza V, Cabrera-Pastor A, Malaguarnera M, Agusti A, et al. Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus. Food Chem Toxicol. 2017;99:135–48. https://doi.org/10.1016/j.fct.2016.11.028.

    Article  PubMed  CAS  Google Scholar 

  70. Vatanparast J, Naseh M, Baniasadi M, Haghdoost-Yazdi H. Developmental exposure to chlorpyrifos and diazinon differentially affect passive avoidance performance and nitric oxide synthase-containing neurons in the basolateral complex of the amygdala. Brain Res. 2013;1494:17–27. https://doi.org/10.1016/j.brainres.2012.11.049.

    Article  CAS  PubMed  Google Scholar 

  71. Slotkin TA, Levin ED, Seidler FJ. Developmental neurotoxicity of parathion: progressive effects on serotonergic systems in adolescence and adulthood. Neurotoxicol Teratol. 2009;31(1):11–7. https://doi.org/10.1016/j.ntt.2008.08.004.

    Article  CAS  PubMed  Google Scholar 

  72. Oriel S, Dori A, Kofman O. Postnatal diisopropylfluorophosphate enhances conditioned vigilance in adult BALB/c and C57BL/6 mice and alters expression of acetylcholinesterase splice variants. Behav Pharmacol. 2014;25(7):661–72. https://doi.org/10.1097/FBP.0000000000000079.

    Article  CAS  PubMed  Google Scholar 

  73. Russell DR W, Overstreet DH, Netherton RA. Sex-linked and other genetic factors in the development of tolerance to the anticholinesterase. DFP Neuropharmacol. 1983;22(1):75–81.

    Article  Google Scholar 

  74. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-7:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001.

    Article  Google Scholar 

  75. Icenogle LM, Christopher NC, Blackwelder WP, Caldwell DP, Qiao D, Seidler FJ, et al. Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicol Teratol. 2004;26(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  76. MacLusky NJ, Naftolin F. Sexual differentiation of the central nervous system. Science. 1981;211(4488):1294–302.

    Article  CAS  PubMed  Google Scholar 

  77. De Felice A, Venerosi A, Ricceri L, Sabbioni M, Scattoni ML, Chiarotti F, et al. Sex-dimorphic effects of gestational exposure to the organophosphate insecticide chlorpyrifos on social investigation in mice. Neurotoxicol Teratol. 2014;46:32–9. https://doi.org/10.1016/j.ntt.2014.09.002.

    Article  PubMed  CAS  Google Scholar 

  78. Ricceri L, Venerosi A, Capone F, Cometa MF, Lorenzini P, Fortuna S, et al. Developmental neurotoxicity of organophosphorous pesticides: fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicol Sci. 2006;93(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  79. Venerosi A, Ricceri L, Rungi A, Sanghez V, Calamandrei G. Gestational exposure to the organophosphate chlorpyrifos alters social-emotional behaviour and impairs responsiveness to the serotonin transporter inhibitor fluvoxamine in mice. Psychopharmacology. 2010;208(1):99–107. https://doi.org/10.1007/s00213-009-1713-2.

    Article  CAS  PubMed  Google Scholar 

  80. Ricceri L, Markina N, Valanzano A, Fortuna S, Cometa MF, Meneguz A, et al. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol Appl Pharmacol. 2003;191(3):189–201.

    Article  CAS  PubMed  Google Scholar 

  81. Venerosi A, Cutuli D, Colonnello V, Cardona D, Ricceri L, Calamandrei G. Neonatal exposure to chlorpyrifos affects maternal responses and maternal aggression of female mice in adulthood. Neurotoxicol Teratol. 2008;30(6):468–74. https://doi.org/10.1016/j.ntt.2008.07.002.

    Article  CAS  PubMed  Google Scholar 

  82. Slotkin TA, Bodwell BE, Ryde IT, Levin ED, Seidler FJ. Exposure of neonatal rats to parathion elicits sex-selective impairment of acetylcholine systems in brain regions during adolescence and adulthood. Environ Health Perspect. 2008;116(10):1308–14. https://doi.org/10.1289/ehp.11451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aldridge JE, Meyer A, Seidler FJ, Slotkin TA. Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect. 2005;113(8):1027–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyer A, Seidler FJ, Cousins MM, Slotkin TA. Developmental neurotoxicity elicited by gestational exposure to chlorpyrifos: when is adenylyl cyclase a target? Environ Health Perspect. 2003;111:1871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Raines KW, Seidler FJ, Slotkin TA. Alterations in serotonin transporter expression in brain regions of rats exposed neonatally to chlorpyrifos. Dev Brain Res. 2001;130:65–72.

    Article  CAS  Google Scholar 

  86. Naseh M, Vatanparast J, Baniasadi M, Hamidi GA. Alterations in nitric oxide synthase-expressing neurons in the forebrain regions of rats after developmental exposure to organophosphates. Neurotoxicol Teratol. 2013;37:23–32. https://doi.org/10.1016/j.ntt.2013.02.003.

    Article  CAS  PubMed  Google Scholar 

  87. • Venerosi A, Tait S, Stecca L, Chiarotti F, De Felice A, Cometa MF, et al. Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring—a mouse study. Environ Health. 2015;14:32. https://doi.org/10.1186/s12940-015-0019-6. This study reports sex-specific effects when chlorpyrifos is administered in the diet, an exposure paradigm particularly relevant to human exposures

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Dam K, Seidler FJ, Slotkin TA. Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills. Dev Brain Res. 2000;121:179–87.

    Article  CAS  Google Scholar 

  89. Slotkin TA, Cousins MM, Tate CA, Seidler FJ. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 2001;902(2):229–43.

    Article  CAS  PubMed  Google Scholar 

  90. Timofeeva OA, Roegge CS, Seidler FJ, Slotkin TA, Levin ED. Persistent cognitive alterations in rats after early postnatal exposure to low doses of the organophosphate pesticide, diazinon. Neurotoxicol Teratol. 2008;30:38–45.

    Article  CAS  PubMed  Google Scholar 

  91. Roegge CS, Timofeeva OA, Seidler FJ, Slotkin TA, Levin ED. Developmental diazinon neurotoxicity in rats: later effects on emotional response. Brain Res Bull. 2008;75(1):166–72.

    Article  CAS  PubMed  Google Scholar 

  92. Slotkin TA, Ryde IT, Levin ED, Seidler FJ. Developmental neurotoxicity of low-dose diazinon exposure of neonatal rats: effects on serotonin systems in adolescence and adulthood. Brain Res Bull. 2008;75(5):640–7. https://doi.org/10.1016/j.brainresbull.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  93. Levin ED, Timofeeva OA, Yang L, Petro A, Ryde IT, Wrench N, et al. Early postnatal parathion exposure in rats causes sex-selective cognitive impairment and neurotransmitter defects which emerge in aging. Behav Brain Res. 2010;208(2):319–27. https://doi.org/10.1016/j.bbr.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  94. Jett DA, Navoa RV, Beckles RA, McLemore GL. Cognitive function and cholinergic neurochemistry in weanling rats exposed to chlorpyrifos. Toxicol Appl Pharmacol. 2001;174(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  95. Levi Y, Kofman O, Schwebel M, Shaldubina A. Discrimination and avoidance learning in adult mice following developmental exposure to diisopropylfluorophosphate. Pharmacol Biochem Behav. 2008;88(4):438–45.

    Article  CAS  PubMed  Google Scholar 

  96. Naksen W, Prapamontol T, Mangklabruks A, Chantara S, Thavornyutikarn P, Robson MG, et al. A single method for detecting 11 organophosphate pesticides in human plasma and breastmilk using GC-FPD. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1025:92–104.

    Article  CAS  Google Scholar 

  97. Ismail AA, Bonner MR, Hendy O, Rasoul GA, Wang K, Olson JR, et al. Comparison of neurological health outcomes between two adolescent cohorts exposed to pesticides in Egypt. PLoS One. 2017;12(2):e0172696. https://doi.org/10.1371/journal.pone.0172696.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Khan K, Ismail AA, Rasoul GA, Bonner MR, Lasarev MR, Hendy O, et al. Longitudinal assessment of chlorpyrifos exposure and self-reported neurological symptoms in adolescent pesticide applicators. BMJ Open. 2014;4(3):e004177. https://doi.org/10.1136/bmjopen-2013-004177.

    Article  PubMed  PubMed Central  Google Scholar 

  99. González-Alzaga B, Hernández AF, Rodríguez-Barranco M, Gómez I, Aguilar-Garduño C, López-Flores I, et al. Pre-and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from South-Eastern Spain. Environ Int. 2015;85:229–37. https://doi.org/10.1016/j.envint.2015.09.019.

    Article  PubMed  CAS  Google Scholar 

  100. Suarez-Lopez JR, Himes JH, Jacobs DR, Alexander BH, Gunnar MR. Acetylcholinesterase activity and neurodevelopment in boys and girls. Pediatrics. 2013;132(6):e1649–58. https://doi.org/10.1542/peds.2013-0108.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rohlman DS, Arcury TA, Quandt SA, Lasarev M, Rothlein J, Travers R, et al. Neurobehavioral performance in preschool children from agricultural and non-agricultural communities in Oregon and North Carolina. Neurotoxicology. 2005;26(4):589–98.

    Article  PubMed  Google Scholar 

  102. Eckerman DA, Gimenes LS, de Souza RC, Galvão PR, Sarcinelli PN, Chrisman JR. Age related effects of pesticide exposure on neurobehavioral performance of adolescent farm workers in Brazil. Neurotoxicol Teratol. 2007;29(1):164–75.

    Article  CAS  PubMed  Google Scholar 

  103. Abdel Rasoul GM, Abou Salem ME, Mechael AA, Hendy OM, Rohlman DS, Ismail AA. Effects of occupational pesticide exposure on children applying pesticides. Neurotoxicology. 2008;29(5):833–8.

    Article  CAS  PubMed  Google Scholar 

  104. London L, Beseler C, Bouchard MF, Bellinger DC, Colosio C, Grandjean P, et al. Neurobehavioural and neurodevelopmental effects of pesticide exposures. Neurotoxicology. 2012;33:887–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–8.

    Article  CAS  PubMed  Google Scholar 

  106. Harrison V, Ross SM. Anxiety and depression following cumulative low-level exposure to organophosphate pesticides. Environ Res. 2016;151:528–36. https://doi.org/10.1016/j.envres.2016.08.020.

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi N, Hashizume M. A systematic review of the influence of occupational organophosphate pesticides exposure on neurological impairment. BMJ Open. 2014;4(6):e004798. https://doi.org/10.1136/bmjopen-2014-004798.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zaganas I, Kapetanaki S, Mastorodemos V, Kanavouras K, Colosio C, Wilks MF, et al. Linking pesticide exposure and dementia: what is the evidence? Toxicology. 2013;307:3–11. https://doi.org/10.1016/j.tox.2013.02.002.

    Article  CAS  PubMed  Google Scholar 

  109. Rohlman DS, Anger WK, Lein PJ. Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology. 2011;32(2):268–76. https://doi.org/10.1016/j.neuro.2010.12.008.

    Article  CAS  PubMed  Google Scholar 

  110. Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci. 2001;2:343–51.

    Article  CAS  PubMed  Google Scholar 

  111. Food and Agriculture Organization of the United Nations. Office of Knowledge Exchange, Research and Extension. 2010-11: The state of food and agriculture: Women in agriculture: closing the gender gap for development. Rome; 2011.

  112. Rothlein J, Rohlman D, Lasarev M, Phillips J, Muniz J, McCauley L. Organophosphate pesticide exposure and neurobehavioral performance in agriculture and nonagricultural Hispanic workers. Environ Health Perspect. 2006;114(5):691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bazylewicz-Walczak B, Majczakowa W, Szymczak M. Behavioral effects of occupational exposure to organophosphorous pesticides in female greenhouse planting workers. Neurotoxicology. 1999;20:819–26.

    CAS  PubMed  Google Scholar 

  114. Maris AF, Franco JL, Mitozo PA, Paviani G, Borowski C, Trevisan R, et al. Gender effects of acute malathion or zinc exposure on the antioxidant response of rat hippocampus and cerebral cortex. Basic Clin Pharmacol Toxicol. 2010;107(6):965–70. https://doi.org/10.1111/j.1742-7843.2010.00614.x.

    Article  CAS  PubMed  Google Scholar 

  115. Sherratt PJ, Hayes JD. In: Ioannides C, editor. Enzyme systems that metabolise drugs and other xenobiotics. Chichester, West Sussex, UK: John Wiley & Sons, Ltd; 2002.

  116. Smolen A, Smolen TN, Han PC, Collins AC. Sex differences in the recovery of brain acetylcholinesterase activity following a single exposure to DFP. Pharmacol Biochem Behav. 1987;26:813–20.

    Article  CAS  PubMed  Google Scholar 

  117. • Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, et al. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the charge study. Environ Health Perspect. 2014;122(10):1103–9. https://doi.org/10.1289/ehp.1307044. This study reports the interesting observation that exposure to pesticides during gestation is slightly more common for males than females

    PubMed  PubMed Central  Google Scholar 

  118. Trueblood AB, Shipp E, Han D, Ross J, Cizmas L. Pesticide-related hospitalizations among children and teenagers in Texas, 2004-2013. Public Heal Reports. 2016;131(4):588–96.

    Article  Google Scholar 

  119. Fiedler N, Rohitrattana J, Siriwong W, Suttiwan P, Ohman Strickland P, Barry Ryan P, et al. Neurobehavioral effects of exposure to organophosphates and pyrethroid pesticides among Thai children. Neurotoxicology. 2015;48:90–9. https://doi.org/10.1016/j.neuro.2015.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fluegge KR, Nishioka M, Wilkins JR III. Effects of simultaneous prenatal exposures to organophosphate and synthetic pyrethroid insecticides on infant neurodevelopment at three months of age. J Environ Toxicol Public Health. 2016;1:60–73. https://doi.org/10.5281/zenodo.218417.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIEHS (ES009089) and the Mailman School of Public Health at Columbia University. D.B.R. is the recipient of a Career Development award and two pilot grants from the NIEHS Center of Northern Manhattan and of the Calderone Prize for Junior Faculty in the Mailman School of Public Health. N.C. is the recipient of the NIEHS Training Grant (T32ES007322) at the Columbia University Mailman School of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicole Comfort or Diane B. Re.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Synthetic Chemicals and Health

Electronic supplementary material

Appendix Table 1

(PDF 118 kb)

Appendix Table 2

(PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comfort, N., Re, D.B. Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course. Curr Envir Health Rpt 4, 392–404 (2017). https://doi.org/10.1007/s40572-017-0171-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0171-y

Keywords

Navigation