Skip to main content
Log in

Gestational exposure to the organophosphate chlorpyrifos alters social–emotional behaviour and impairs responsiveness to the serotonin transporter inhibitor fluvoxamine in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

The organophosphate chlorpyrifos (CPF) is a pesticide largely used worldwide. Studies from animal models indicate that CPF exposure during development at low doses can target different neurotransmitter systems in the absence of overt cholinergic effects.

Methods

Late gestational exposure (gestational days 14–17) to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice at adulthood. Neurobehavioural effects likely involving serotonin (5-hydroxytryptamine, 5HT) transmission were assessed both in males and females, through the light–dark exploration test to assess CPF effects on anxiety profiles and the forced swimming test to evaluate the response to the 5HT transporter (5HTT) inhibitor fluvoxamine (30 mg/kg). In females only, we evaluated the effects of gestational exposure to CPF on maternal aggression, under basal condition or after injection of fluvoxamine.

Results

Gestational CPF exposure increased anxiety levels only in female mice, as shown by the augmented thigmotaxis behaviour and the lower latency to enter in the dark compartment. In the forced swimming test, no differences between CPF and control mice were found when assessed under basal condition (saline administration), but both male and female CPF mice missed to show the typical behavioural effects of the 5HTT inhibitor fluvoxamine. During maternal aggression, CPF females showed lower propensity to and intensity of aggressive behaviour, together with mild decreased responsiveness to fluvoxamine administration.

Conclusions

Overall, the present results confirm a specific and sex-dependent vulnerability of affective/emotional domains to developmental CPF exposure. Furthermore, data provide clear indication on the disrupting effects of prenatal CPF on serotoninergic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamec R, Head D, Blundell J, Burton P, Berton O (2006) Lasting anxiogenic effects of feline predator stress in mice: sex differences in vulnerability to stress and predicting severity of anxiogenic response from the stress experience. Physiol Behav 88:12–29

    Article  CAS  PubMed  Google Scholar 

  • Aldridge JE, Seidler FJ, Slotkin TA (2004) Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling. Environ Health Perspect 112:148–155

    CAS  PubMed  Google Scholar 

  • Aldridge JE, Levin ED, Seidler FJ, Slotkin TA (2005a) Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect 113:527–531

    PubMed  Google Scholar 

  • Aldridge JE, Meyer A, Seidler FJ, Slotkin TA (2005b) Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect 113:1027–1031

    Article  CAS  PubMed  Google Scholar 

  • Azmitia EC, Gannon PJ (1986) The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv Neurol 43:407–468

    CAS  PubMed  Google Scholar 

  • Borue X, Chen J, Condron BG (2007) Developmental effects of SSRIs: lessons learned from animal studies. Int J Dev Neurosci 25:341–347

    Article  CAS  PubMed  Google Scholar 

  • Braquenier JB, Quertemont E, Tirelli E, Plumier JC (2009) Anxiety in adult female mice following perinatal exposure to chlorpyrifos. Neurotoxicol Teratol (in press). doi:10.1016/j.ntt.2009.08.008

  • Crumpton TL, Seidler FJ, Slotkin TA (2000) Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res 857:87–98

    Article  CAS  PubMed  Google Scholar 

  • Dam K, Garcia SJ, Seidler FJ, Slotkin TA (1999a) Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res 116:9–20

    Article  CAS  PubMed  Google Scholar 

  • Dam K, Seidler FJ, Slotkin TA (1999b) Chlorpyrifos releases norepinephrine from adult and neonatal rat brain synaptosomes. Brain Res Dev Brain Res 118:129–133

    Article  CAS  PubMed  Google Scholar 

  • de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

    Article  PubMed  CAS  Google Scholar 

  • EPA (2000) Cancellation order

  • EPA (2002) Chlopyrifos facts

  • Esaki T, Cook M, Shimoji K, Murphy DL, Sokoloff L, Holmes A (2005) Developmental disruption of serotonin transporter function impairs cerebral responses to whisker stimulation in mice. Proc Natl Acad Sci U S A 102:5582–5587

    Article  CAS  PubMed  Google Scholar 

  • Eskenazi B, Rosas LG, Marks AR, Bradman A, Harley K, Holland N, Johnson C, Fenster L, Barr DB (2008) Pesticide toxicity and the developing brain. Basic Clin Pharmacol Toxicol 102:228–236

    CAS  PubMed  Google Scholar 

  • Felten DL, Sladek JR Jr (1983) Monoamine distribution in primate brain V. Monoaminergic nuclei: anatomy, pathways and local organization. Brain Res Bull 10:171–284

    Article  CAS  PubMed  Google Scholar 

  • Ferrari PF, Palanza P, Parmigiani S, de Almeida RM, Miczek KA (2005) Serotonin and aggressive behavior in rodents and nonhuman primates: predispositions and plasticity. Eur J Pharmacol 526:259–273

    Article  CAS  PubMed  Google Scholar 

  • Gammie SC, Nelson RJ (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19:8027–8035

    CAS  PubMed  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3:531–541

    Article  CAS  PubMed  Google Scholar 

  • Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Li YW, Joh TH, Cotton RG, Howe PR, Geffen LB, Blessing WW (1988) Distribution of monoamine-synthesizing neurons in the human medulla oblongata. J Comp Neurol 273:301–317

    Article  CAS  PubMed  Google Scholar 

  • Hariri AR, Holmes A (2006) Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10:182–191

    Article  PubMed  Google Scholar 

  • Hasen NS, Gammie SC (2005) Differential fos activation in virgin and lactating mice in response to an intruder. Physiol Behav 84:681–695

    Article  CAS  PubMed  Google Scholar 

  • Hohmann CF, Richardson C, Pitts E, Berger-Sweeney J (2000) Neonatal 5, 7-DHT lesions cause sex-specific changes in mouse cortical morphogenesis. Neural Plast 7:213–232

    Article  CAS  PubMed  Google Scholar 

  • Hohmann CF, Walker EM, Boylan CB, Blue ME (2007) Neonatal serotonin depletion alters behavioral responses to spatial change and novelty. Brain Res 1139:163–177

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Murphy DL, Crawley JN (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl) 161:160–167

    Article  CAS  Google Scholar 

  • Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL (2003) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28:2077–2088

    CAS  PubMed  Google Scholar 

  • Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    Article  CAS  PubMed  Google Scholar 

  • Joyce MP, Carden SE (1999) The effects of 8-OH-DPAT and (+/−)—pindolol on isolation-induced ultrasonic vocalizations in 3-, 10-, and 14-day-old rats. Dev Psychobiol 34:109–117

    Article  CAS  PubMed  Google Scholar 

  • Lidov HG, Molliver ME (1982) The structure of cerebral cortex in the rat following prenatal administration of 6-hydroxydopamine. Brain Res 255:81–108

    CAS  PubMed  Google Scholar 

  • Lisboa SF, Oliveira PE, Costa LC, Venancio EJ, Moreira EG (2007) Behavioral evaluation of male and female mice pups exposed to fluoxetine during pregnancy and lactation. Pharmacology 80:49–56

    Article  CAS  PubMed  Google Scholar 

  • Lonstein JS, Gammie SC (2002) Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26:869–888

    Article  PubMed  CAS  Google Scholar 

  • Maestripieri D, D’Amato FR (1991) Anxiety and maternal aggression in house mice (Mus musculus): a look at interindividual variability. J Comp Psychol 105:295–301

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ, Chiavegatto S (2001) Molecular basis of aggression. Trends Neurosci 24:713–719

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20:858–865

    Article  CAS  PubMed  Google Scholar 

  • Noorlander CW, Ververs FF, Nikkels PG, van Echteld CJ, Visser GH, Smidt MP (2008) Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities. PLoS One 3:e2782

    Article  PubMed  CAS  Google Scholar 

  • Ostrea EM, Morales V, Ngoumgna E, Prescilla R, Tan E, Hernandez E, Ramirez GB, Cifra HL, Manlapaz ML (2002) Prevalence of fetal exposure to environmental toxins as determined by meconium analysis. Neurotoxicology 23:329–339

    Article  CAS  PubMed  Google Scholar 

  • Palanza P (2001) Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev 25:219–233

    Article  CAS  PubMed  Google Scholar 

  • Parmigiani S, Brain PF, Mainardi D, Brunoni V (1988) Different patterns of biting attack employed by lactating female mice (Mus domesticus) in encounters with male and female conspecific intruders. J Comp Psychol 102:287–293

    Article  CAS  PubMed  Google Scholar 

  • Ricceri L, Markina N, Valanzano A, Fortuna S, Cometa MF, Meneguz A, Calamandrei G (2003) Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol Appl Pharmacol 191:189–201

    Article  CAS  PubMed  Google Scholar 

  • Ricceri L, Venerosi A, Capone F, Cometa MF, Lorenzini P, Fortuna S, Calamandrei G (2006) Developmental neurotoxicity of organophosphorous pesticides: fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicol Sci 93:105–113

    Article  CAS  PubMed  Google Scholar 

  • Roy TS, Andrews JE, Seidler FJ, Slotkin TA (1998) Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos. Teratology 58:62–68

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, Seidler FJ (2007) Prenatal chlorpyrifos exposure elicits presynaptic serotonergic and dopaminergic hyperactivity at adolescence: critical periods for regional and sex-selective effects. Reprod Toxicol 23:421–427

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, Levin ED, Seidler FJ (2006) Comparative developmental neurotoxicity of organophosphate insecticides: effects on brain development are separable from systemic toxicity. Environ Health Perspect 114:746–751

    Article  CAS  PubMed  Google Scholar 

  • Svare B, Betteridge C, Katz D, Samuels O (1981) Some situational and experiential determinants of maternal aggression in mice. Physiol Behav 26:253–258

    Article  CAS  PubMed  Google Scholar 

  • Tait S, Ricceri L, Venerosi A, Maranghi F, Mantovani A, Calamandrei G (2009) Long-term effects on hypothalamic neuropeptides after developmental exposure to chlorpyrifos in mice. Environ Health Perspect 117:112–116

    CAS  PubMed  Google Scholar 

  • Venerosi A, Calamandrei G, Ricceri L (2006) A social recognition test for female mice reveals behavioral effects of developmental chlorpyrifos exposure. Neurotoxicol Teratol 28:466–471

    Article  CAS  PubMed  Google Scholar 

  • Venerosi A, Cutuli D, Colonnello V, Cardona D, Ricceri L, Calamandrei G (2008) Neonatal exposure to chlorpyrifos affects maternal responses and maternal aggression of female mice in adulthood. Neurotoxicol Teratol 30:468–474

    Article  CAS  PubMed  Google Scholar 

  • Venerosi A, Ricceri L, Scattoni ML, Calamandrei G (2009) Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups. Environ Health 8:12

    Article  PubMed  CAS  Google Scholar 

  • Weller A, Leguisamo AC, Towns L, Ramboz S, Bagiella E, Hofer M, Hen R, Brunner D (2003) Maternal effects in infant and adult phenotypes of 5HT1A and 5HT1B receptor knockout mice. Dev Psychobiol 42:194–205

    Article  PubMed  Google Scholar 

  • Wilcox RG (1987) New statistical procedures for the social sciences. Erlbaum, Hillsdale

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Giovanni Dominici for his technical assistance. This research was supported by the HENVINET, Health and Environment Network (EC Contract 037019) to GC and by ISS/NIH project 5301/530H “Neurobehavioral phenotyping of genetically modified mouse models of mental retardation” to LR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldina Venerosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venerosi, A., Ricceri, L., Rungi, A. et al. Gestational exposure to the organophosphate chlorpyrifos alters social–emotional behaviour and impairs responsiveness to the serotonin transporter inhibitor fluvoxamine in mice. Psychopharmacology 208, 99–107 (2010). https://doi.org/10.1007/s00213-009-1713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1713-2

Keywords

Navigation