Skip to main content
Log in

Effect of particle angularity on flow regime transitions and segregation of bidisperse blends in a rotating drum

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Granular segregation is a phenomenon that occurs when mixing different-sized particles. This work aims at comparing the segregation pattern and intensity in a bidisperse blend of spherical, cubic and icosahedral particles with a size ratio of 1.5 in a rotating drum. A model based on the discrete element method is used to simulate the flow of particles at rotational speeds ranging from 15 RPM to 115 RPM. This model is validated for monodisperse cubic particles. Segregation is shown to decrease with increasing particle shape angularity for a given rotational speed as long as the flow remains in the same regime. For all three shapes, the same sequence of segregation pattern occurs as the rotational speed increases (from a classic core segregation to a mixed state, and then to inverse segregation), but the speed thresholds for the transitions are shape-dependent and linked to the total kinetic energy of particles, as evidenced by a proposed apparent Froude number. The slip at the wall and the ability to spin explain why rounder shapes are less efficient to transfer kinetic energy from the wall into translational motion of the particles. This triggers regime transitions at higher rotational speeds for rounder particles, but at the same apparent Froude numbers. The transitions between cascading and cataracting, and between cataracting and centrifuging, occur at \(Fr_\mathrm{{app}}\approx 0.20\) and 0.35, respectively, regardless of the particle shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

D :

: drum diameter (m)

\(d_p\) :

: particle diameter (sphere) (m)

\(e_n\) :

: coefficient of restitution (–)

f :

: drum filling degree (%)

\(\mathbf {F_{c,ij}}\) :

: contact force between particles i and j (N)

\(\mathbf {F_{nc,ik}}\) :

: non-contact force between particles i and k (N)

\(\mathbf {F_{g,i}}\) :

: gravitational force acting on particle i (N)

\(\mathbf {F_{i,f}}\) :

: interaction force between particle i and a fluid f (N)

\(\mathbf {F_{c,iw}}\) :

: contact force between particles i and the wall (N)

Fr :

: Froude number (−)

\(Fr_\mathrm{{app}}\) :

: apparent Froude number (−)

\({\varvec{g}}\) :

: gravitational acceleration (9.81 \(\mathrm {m/s}^2\))

h :

: active layer thickness (m)

\(I_i\) :

: inertia of particle i (\(\mathrm {kg}\!\cdot \!\mathrm{{m}}^2\))

\(I_{seg}\) :

: segregation index (−)

\(k_n\) :

: numerical stiffness (\(\mathrm{Pa}\!\cdot \!\mathrm{m}\))

L :

: drum length (m)

\(l_p\) :

: cube or icosahedron edge length (m)

\(m_i\) :

: mass of particle i

N :

: total number of particles in the system (−)

r :

: particle radius (sphere) (m)

R :

: drum radius (m)

\({\varvec{R_j}}\) :

: vector pointing between the center of mass of particle i and the contact point with particle j (m)

\({\varvec{R_w}}\) :

: vector pointing between the center of mass of particle i and the contact point with the wall (m)

t :

: time (s)

\(T_C\) :

: contact duration (s)

\({\varvec{T_{ij}}}\) :

: torque calculated between particles i and j in contact (\(\mathrm {N}\!\cdot \!\mathrm {m}\))

\(\mathbf {v_i}\) :

: translational total velocity of particle i (m/s)

\(V_\mathrm{{cell}}\) :

: volume of the cell (\(\mathrm {m}^3\))

\(V_{p,\mathrm {cell}}\) :

: volume occupied by particles in the cell (\(\mathrm {m}^3\))

\(\overline{v_w}\) :

: dimensionless mean velocity at the wall (m/s)

x :

: mass concentration (kg/kg)

\(\Delta t\) :

: time step (s)

\(\theta \) :

: dynamic angle of repose (\(^\circ \))

\(\lambda _i\) :

: weighting coefficient (−)

\(\mu _C\) :

: sliding friction coefficient (−)

\(\mu _r\) :

: rolling friction coefficient (−)

\(\rho \) :

: density (\(\mathrm{kg}\!/\!\mathrm{m}^3)\)

\(\sigma \) :

: standard deviation (\(\mathrm{kg}\!/\mathrm{kg}\))

\({\varvec{\omega }}\) :

: rotational speed of the drum (\(\mathrm{rad}/\mathrm{s}\))

\({\varvec{\omega _i}}\) :

: angular velocity of particle i (\(\mathrm{rad}/\mathrm{s}\))

References

  1. Deng Z, Umbanhowar PB, Ottino JM, Lueptow RM (2018) Continuum modelling of segregating tridisperse granular chute flow, Proceedings. Math, Phys, Eng Sci 474(2211):20170384–20170384

    MATH  Google Scholar 

  2. Khakhar DV, Orpe AV, Ottino JM (2001) Continuum model of mixing and size segregation in a rotating cylinder: concentration-flow coupling and streak formation. Powder Technol 116(2):232–245

    Article  Google Scholar 

  3. Combarros Garcia M, Feise HJ, Strege S, Kwade A (2016) Segregation in heaps and silos: Comparison between experiment, simulation and continuum model. Powder Technol 293:26–36

    Article  Google Scholar 

  4. Ayeni OO, Wu CL, Joshi JB, Nandakumar K (2015) A discrete element method study of granular segregation in non-circular rotating drums. Powder Technol 283:549–560

    Article  Google Scholar 

  5. Gui N, Fan J, Gao J, Yang X (2014) Particle mixing study in rotating wavy wall tumblers by discrete element method simulation. Ind Eng Chem Res 53(33):13087–13097

    Article  Google Scholar 

  6. Chen H, Liu YL, Zhao XQ, Xiao YG, Liu Y (2015) Numerical investigation on angle of repose and force network from granular pile in variable gravitational environments. Powder Technol 283:607–617

    Article  Google Scholar 

  7. Hovad E, Larsen P, Walther JH, Thorborg J, Hattel JH (2015) Iop, Flow dynamics of green sand in the disamatic moulding process using discrete element method (dem). Mcwasp Xiv: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes 84:8

  8. Li J, Mason DJ (2000) A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technol 112(3):273–282

    Article  Google Scholar 

  9. Li YJ, Dove A, Curtis JS, Colwell JE (2016) 3d dem simulations and experiments exploring low-velocity projectile impacts into a granular bed. Powder Technol 288:303–314

    Article  Google Scholar 

  10. Mishra BK, Thornton C (2002) An improved contact model for ball mill simulation by the discrete element method. Adv Powder Technol 13(1):25–41

    Article  Google Scholar 

  11. Naik S, Chaudhuri B (2015) Quantifying dry milling in pharmaceutical processing: A review on experimental and modeling approaches. J Pharm Sci 104(8):2401–2413

    Article  Google Scholar 

  12. Sun JJ, Luo ZG, Zou ZS (2015) Numerical simulation of raceway phenomena in a corex melter-gasifier. Powder Technol 281:159–166

    Article  Google Scholar 

  13. Weinhart T, Labra C, Luding S, Ooi JY (2016) Influence of coarse-graining parameters on the analysis of dem simulations of silo flow. Powder Technol 293:138–148

    Article  Google Scholar 

  14. Alizadeh E, Bertrand F, Chaouki J (2014) Comparison of dem results and lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE J 60(1):60–75

    Article  Google Scholar 

  15. Ottino JM, Khakhar DV (2000) Mixing and segregation of granular materials. Annu Rev Fluid Mech 32:55–91

    Article  MathSciNet  MATH  Google Scholar 

  16. Sherritt RG, Chaouki J, Mehrotra AK, Behie LA (2003) Axial dispersion in the three-dimensional mixing of particles in a rotating drum reactor. Chem Eng Sci 58(2):401–415

    Article  Google Scholar 

  17. Mellmann J (2001) The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol 118(3):251–270

    Article  Google Scholar 

  18. Dragomir SC, Sinnott MD, Semercigil SE, Turan F (2014) A study of energy dissipation and critical speed of granular flow in a rotating cylinder. J Sound Vib 333(25):6815–6827

    Article  Google Scholar 

  19. Dubé O (2013) Dynamique particulaire dans des lits fixes et rotatifs. Thése de doctorat, École Polytechnique Montréal

  20. Hohner D, Wirtz S, Scherer V (2014) A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method. Powder Technol 253:256–265

    Article  Google Scholar 

  21. Dubé O, Alizadeh E, Chaouki J, Bertrand F (2013) Dynamics of non-spherical particles in a rotating drum. Chem Eng Sci 101:486–502

    Article  Google Scholar 

  22. Mosby J, de Silva SR, Enstad GG (1996) Segregation of particulate materials?: Mechanisms and testers. KONA Powder Part J 14(May):31–43

    Article  Google Scholar 

  23. Arntz M, Beeftink H, Otter W, Briels W, Boom R (2014) Segregation of granular particles by mass, radius, and density in a horizontal rotating drum. AIChE J 60(1):50–59

    Article  Google Scholar 

  24. Jain N, Ottino JM, Lueptow RM (2005) Regimes of segregation and mixing in combined size and density granular systems: An experimental study. Granul Matter 7(2–3):69–81

    Article  Google Scholar 

  25. Arntz MMHD, den Otter WK, Briels WJ, Bussmann PJT, Beeftink HH, Boom RM (2008) Granular mixing and segregation in a horizontal rotating drum: A simulation study on the impact of rotational speed and fill level. AIChE J 54(12):3133–3146

    Article  Google Scholar 

  26. Yamamoto M, Ishihara S, Kano J (2016) Evaluation of particle density effect for mixing behavior in a rotating drum mixer by dem simulation. Adv Powder Technol 27(3):864–870

    Article  Google Scholar 

  27. Alchikh-Sulaiman B, Alian M, Ein-Mozaffari F, Lohi A, Upreti SR (2016) Using the discrete element method to assess the mixing of polydisperse solid particles in a rotary drum. Particuol 25:133–142

    Article  Google Scholar 

  28. Chand R, Muniandy SV, Wong CS, Singh J (2017) Discrete element method study of shear-driven granular segregation in a slowly rotating horizontal drum. Particuol 32:89–94

    Article  Google Scholar 

  29. Barczi T, Kohout M, Kozakovic M, Havlica J, Ratnayake C (2018) Discrete element method simulation and experimental validation of pattern development in a rotating drum mixer. Chem Eng Technol 41(8):1524–1530

    Article  Google Scholar 

  30. Pereira GG, Tran N, Cleary PW (2014) Segregation of combined size and density varying binary granular mixtures in a slowly rotating tumbler. Granul Matter 16(5):711–732

    Article  Google Scholar 

  31. Zhang Z, Gui N, Ge L, Li Z (2017) Numerical study of mixing of binary-sized particles in rotating tumblers on the effects of end-walls and size ratios. Powder Technol 314:164–174

    Article  Google Scholar 

  32. D-Ortona U, Thomas N, Lueptow RM (2016) Influence of rough and smooth walls on macroscale granular segregation patterns. Phys Rev E 93(2):022906

    Article  Google Scholar 

  33. Ai J, Chen J-F, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282

    Article  Google Scholar 

  34. Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in dem. Powder Technol 217:409–417

    Article  Google Scholar 

  35. Lu G, Third JR, Müller CR (2015) Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chem Eng Sci 127:425–465

    Article  Google Scholar 

  36. Wachs A (2019) Particle-scale computational approaches to model dry and saturated granular flows of non-brownian, non-cohesive, and non-spherical rigid bodies. Acta Mechanica 230(6):1919–1980

    Article  MathSciNet  MATH  Google Scholar 

  37. Rakotonirina AD, Delenne J-Y, Radjai F, Wachs A (2019) Grains3d, a flexible dem approach for particles of arbitrary convex shape-part iii: extension to non-convex particles modelled as glued convex particles. Comput Part Mech 6(1):55–84

    Article  Google Scholar 

  38. He SY, Gan JQ, Pinson D, Yu AB, Zhou ZY (2019) Flow regimes of cohesionless ellipsoidal particles in a rotating drum. Powder Technol 354:174–187

    Article  Google Scholar 

  39. Norouzi HR, Zarghami R, Mostoufi N (2015) Insights into the granular flow in rotating drums. Chem Eng Res Des 102:12–25

    Article  Google Scholar 

  40. Gui N, Yang X, Tu J, Jiang S (2018) Numerical study of the motion behaviour of three-dimensional cubic particle in a thin drum. Adv Powder Technol 29(2):426–437

    Article  Google Scholar 

  41. Makse HA (1997) Stratification instability in granular flows. Physl Rev E 56(6):7008–7016

    Article  MathSciNet  Google Scholar 

  42. Santos DA, Barrozo MAS, Duarte CR, Weigler F, Mellmann J (2016) Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using dem. Adv Powder Technol 27(2):692–703

    Article  Google Scholar 

  43. Dubé O, Ackley M, Celik C, Chaouki J, Bertrand F (2014) Discrete element simulation of the dynamics of adsorbents in a radial flow reactor used for gas prepurification. Adsorpt 20(1):91–107

    Article  Google Scholar 

  44. Pereira GG, Cleary PW (2017) Segregation due to particle shape of a granular mixture in a slowly rotating tumbler. Granul Matter 19(2):23

    Article  Google Scholar 

  45. He SY, Gan JQ, Pinson D, Zhou ZY (2019) Particle shape-induced radial segregation of binary mixtures in a rotating drum. Powder Technol 341:157–166

    Article  Google Scholar 

  46. Maione R, Kiesgen De Richter S, Mauviel G, Wild G (2015) Dem investigation of granular flow and binary mixture segregation in a rotating tumbler: Influence of particle shape and internal baffles. Powder Technol 286:732–739

    Article  Google Scholar 

  47. Blais B, Vidal D, Bertrand F, Patience GS, Chaouki J (2019) Experimental methods in chemical engineering: Discrete element method-dem. Can J Chem Eng 97(7):1964–1973

    Article  Google Scholar 

  48. Wachs A, Girolami L, Vinay G, Ferrer G (2012) Grains3d, a flexible dem approach for particles of arbitrary convex shape - part i: Numerical model and validations. Powder Technol 224:374–389

    Article  Google Scholar 

  49. Rakotonirina AD, Wachs A (2018) Grains3d, a flexible dem approach for particles of arbitrary convex shape - part ii: Parallel implementation and scalable performance. Powder Technol 324:18–35

    Article  Google Scholar 

  50. Džiugys A, Peters B (2001) An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul Matter 3(4):231–266

    Article  Google Scholar 

  51. Rapaport D (2007) Radial and axial segregation of granular matter in a rotating cylinder: A simulation study. Phys Rev E 75(3):031301

    Article  Google Scholar 

  52. Khakhar D. V. Orpe A. V. Hajra S. K. Segregation of granular materials in rotating cylinders, in: STATPHYS - Kolkata IV, January 14, 2002 - January 19, 2002, Vol. 318 of Physica A: Statistical Mechanics and its Applications, Elsevier, Kolkata, India, 2003, pp. 129–136

  53. Santos DA, Duarte CR, Barrozo MAS (2016) Segregation phenomenon in a rotary drum: Experimental study and cfd simulation. Powder Technol 294:1–10

    Article  Google Scholar 

  54. Lemieux M, Bertrand F, Chaouki J, Gosselin P (2007) Comparative study of the mixing of free-flowing particles in a v-blender and a bin-blender. Chem Eng Sci 62(6):1783–1802

    Article  Google Scholar 

  55. Gui N, Yang X, Tu J, Jiang S, Zhang Z (2018) Numerical simulation of tetrahedral particle mixing and motion in rotating drums. Particuol 39:1–11

    Article  Google Scholar 

  56. Komossa H, Wirtz S, Scherer V, Herz F, Specht E (2015) Heat transfer in indirect heated rotary drums filled with monodisperse spheres: Comparison of experiments with dem simulations. Powder Technol 286:722–731

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Calcul Quebec, Compute Canada and the Natural Sciences and Engineering Research Council of Canada for computational resources and funding. The authors also gratefully acknowledge financial support from the Simulation-based Engineering Science (Genie Par la Simulation) program funded through the CREATE program of the Natural Sciences and Engineering Research Council of Canada. Special thanks to Prof. Balmforth (UBC) for the use of the rotating drum and to Dr. Daniel Rakotonirina for introducing and helping understand Grains3D, even remotely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Beaulieu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaulieu, C., Vidal, D., Niyonkuru, C. et al. Effect of particle angularity on flow regime transitions and segregation of bidisperse blends in a rotating drum . Comp. Part. Mech. 9, 443–463 (2022). https://doi.org/10.1007/s40571-021-00421-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00421-1

Keywords

Navigation