Skip to main content
Log in

Wall to particle bed contact conduction heat transfer in a rotary drum using DEM

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Contact conduction heat transfer behavior in a rotary drum using the discrete element method (DEM)-based simulation codes MFIX-DEM (open-source) and EDEM (commercial) is investigated. Simulations are performed to compare the performance of open-source and commercial code models with experimental data. This study also aims to investigate the effects of particle size distribution (PSD), rotation speed, and rolling friction on overall wall–bed heat transfer using the validated codes. It is found that the variability in the PSD with same mean, μ, and standard deviation, σ, resulted in different heat transfer coefficients. Monodispersed particle beds exhibit better heat transfer when compared to polydispersed beds, because heat transfer is inhibited as the distribution broadens due to segregation. Rotation speed has minimal impact on conduction heat transfer. At lower values of rolling friction, particle circulation in the bed is enhanced and therefore better heat transfer is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Batchelor GK, O’Brien RW (1977) Thermal or electrical conduction through a granular material. Proc R Soc A Math Phys Eng Sci 355:313–333. https://doi.org/10.1098/rspa.1977.0100

    Article  Google Scholar 

  2. Bongo Njeng AS, Vitu S, Clausse M, Dirion J-L, Debacq M (2018) Wall-to-solid heat transfer coefficient in flighted rotary kilns: experimental determination and modeling. Exp Therm Fluid Sci 91:197–213. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2017.10.024

    Article  Google Scholar 

  3. Bui RT, Simard G, Charette A, Kocaefe Y, Perron J (1995) Mathematical modeling of the rotary coke calcining kiln. Can J Chem Eng 73:534–545. https://doi.org/10.1002/cjce.5450730414

    Article  Google Scholar 

  4. Chaudhuri B, Muzzio FJ, Tomassone MS (2010) Experimentally validated computations of heat transfer in granular materials in rotary calciners. Powder Technol 198:6–15. https://doi.org/10.1016/j.powtec.2009.09.024

    Article  Google Scholar 

  5. Chaudhuri B, Muzzio FJ, Tomassone MS (2006) Modeling of heat transfer in granular flow in rotating vessels. Chem Eng Sci 61:6348–6360. https://doi.org/10.1016/j.ces.2006.05.034

    Article  Google Scholar 

  6. Chen S, Adepu M, Emady H, Jiao Y, Gel A (2017) Enhancing the physical modeling capability of open-source MFIX-DEM software for handling particle size polydispersity: implementation and validation. Powder Technol 317:117–125. https://doi.org/10.1016/j.powtec.2017.04.055

    Article  Google Scholar 

  7. Dietiker JF (2013) Documentation of open-source MFIX-DEM software for gas–solids. Géotechnique 29:47–65

    Google Scholar 

  8. Ding YL, Forster R, Seville JPK, Parker DJ (2002) Segregation of granular flow in the transverse plane of a rolling mode rotating drum. Int J Multiph Flow 28:635–663

    Article  Google Scholar 

  9. Emady HN, Anderson KV, Borghard WG, Muzzio FJ, Glasser BJ, Cuitino A (2016) Prediction of conductive heating time scales of particles in a rotary drum. Chem Eng Sci 152:45–54. https://doi.org/10.1016/j.ces.2016.05.022

    Article  Google Scholar 

  10. Frankowski P, Morgeneyer M (2013) Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements. In: AIP conference proceedings, pp 851–854. https://doi.org/10.1063/1.4812065

  11. Georgallis M, Nowak P, Salcudean M, Gartshore IS (2002) Mathematical modelling of lime kilns. Pulp Pap Can 103:44–47

    Google Scholar 

  12. Herz F, Mitov I, Specht E, Stanev R (2012) Influence of operational parameters and material properties on the contact heat transfer in rotary kilns. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.022

    Article  Google Scholar 

  13. Huang J, da Silva MV, Krabbenhoft K (2013) Three-dimensional granular contact dynamics with rolling resistance. Comput Geotech 49:289–298. https://doi.org/10.1016/j.compgeo.2012.08.007

    Article  Google Scholar 

  14. Kawecki W, Kurcyusz E, Manitius A (1974) Mathematical model of the aluminum oxide rotary kiln. Ind Eng Chem Process Des Dev 13:132–142. https://doi.org/10.1021/i260050a007

    Article  Google Scholar 

  15. Kwapinska M, Saage G, Tsotsas E (2008) Continuous versus discrete modelling of heat transfer to agitated beds. Powder Technol 181:331–342. https://doi.org/10.1016/J.POWTEC.2007.05.025

    Article  Google Scholar 

  16. Liu H, Yin H, Zhang M, Xie M, Xi X (2016) Numerical simulation of particle motion and heat transfer in a rotary kiln. Powder Technol 287:239–247. https://doi.org/10.1016/j.powtec.2015.10.007

    Article  Google Scholar 

  17. Martins MA, Oliveira LS, Franca AS (2001) Modeling and simulation of petroleum coke calcination in rotary kilns. Fuel 80:1611–1622. https://doi.org/10.1016/S0016-2361(01)00032-1

    Article  Google Scholar 

  18. Mellmann J (2001) The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol 118:251–270. https://doi.org/10.1016/S0032-5910(00)00402-2

    Article  Google Scholar 

  19. Mesnier A, Rouabah M, Cogné C, Peczalski R, Vessot-Crastes S, Vacus P, Andrieu J (2018) Mechanical and thermal segregation of milli-beads during contact heating in a rotary drum. DEM modeling and simulation, pp 11–14. https://doi.org/10.4995/ids2018.2018.7423

  20. Morris AB, Pannala S, Ma Z, Hrenya CM (2015) A conductive heat transfer model for particle flows over immersed surfaces. Int J Heat Mass Transf 89:1277–1289. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.004

    Article  Google Scholar 

  21. Musser JMH (2011) Modeling of heat transfer and reactive chemistry for particles in gas-solid flow utilizing continuum-discrete methodology (CDM). PhD thesis, West Virginia University

  22. Nafsun AI, Herz F, Liu X (2018) Influence of material thermal properties and dispersity on thermal bed mixing in rotary drums. Powder Technol 331:121–128. https://doi.org/10.1016/j.powtec.2018.01.072

    Article  Google Scholar 

  23. Nguyen HT, Cosson B, Lacrampe MF, Krawczak P (2015) Numerical simulation on the flow and heat transfer of polymer powder in rotational molding. Int J Mater Form 8:423–438. https://doi.org/10.1007/s12289-014-1185-8

    Article  Google Scholar 

  24. Ortiz OA, Suárez GI, Nelson A (2005) Dynamic simulation of a pilot rotary kiln for charcoal activation. Comput Chem Eng 29:1837–1848. https://doi.org/10.1016/j.compchemeng.2005.03.005

    Article  Google Scholar 

  25. Peray KE, Waddell JJ (1986) The rotary cement kiln. Chem. Publ. Co., Boston, pp 1–5. https://doi.org/10.1007/s13398-014-0173-7.2

    Book  Google Scholar 

  26. Rovaglio M, Manca D, Biardi G (1998) Dynamic modeling of waste incineration plants with rotary kilns. Chem Eng Sci 53:2727–2742. https://doi.org/10.1016/S0009-2509(98)00081-5

    Article  Google Scholar 

  27. Syamlal M (1998) MFIX documentation numerical technique. Tech. Note DOE/MC31346-5824, NTIS/DE98002029, Natl. Energy Technol. Lab. Dep. Energy 5824, DE-AC21-95MC31346

  28. Syed Z, Tekeste M, White D (2017) A coupled sliding and rolling friction model for DEM calibration. J Terramech 72:9–20. https://doi.org/10.1016/J.JTERRA.2017.03.003

    Article  Google Scholar 

  29. Thammavong P, Debacq M, Vitu S, Dupoizat M (2011) Experimental apparatus for studying heat transfer in externally heated rotary kilns. Chem Eng Technol 34:707–717. https://doi.org/10.1002/ceat.201000391

    Article  Google Scholar 

  30. Tsotsas E (2019) Particle–particle heat transfer in thermal DEM: three competing models and a new equation. Int J Heat Mass Transf 132:939–943. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.12.090

    Article  Google Scholar 

  31. Vargas WL, McCarthy JJ (2001) Heat conduction in granular materials. AIChE 47:1052–1059

    Article  Google Scholar 

  32. Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in DEM. Powder Technol 217:409–417. https://doi.org/10.1016/J.POWTEC.2011.10.057

    Article  Google Scholar 

  33. Wes GWJ, Drinkenburg AAH, Stemerding S (1976) Heat transfer in a horizontal rotary drum reactor. Powder Technol 13:185–192. https://doi.org/10.1016/0032-5910(76)85003-6

    Article  Google Scholar 

  34. Xu T, Torres PD, Beck LW, Haw JF (1984) Catalyst prepartion by impregnation and activity distribution. Chem Eng Sci 39:859–864

    Article  Google Scholar 

  35. Yang WJ, Zhou ZY, Yu AB (2015) Particle scale studies of heat transfer in a moving bed. Powder Technol 281:99–111. https://doi.org/10.1016/j.powtec.2015.04.071

    Article  Google Scholar 

  36. Yazdani E, Hashemabadi SH (2019) DEM simulation of heat transfer of binary-sized particles in a horizontal rotating drum. Granul Matter 21:6. https://doi.org/10.1007/s10035-018-0857-3

    Article  Google Scholar 

  37. Yohannes B, Emady H, Anderson K, Paredes I, Javed M, Borghard W, Muzzio FJ, Glasser BJ, Cuitino AM (2016) Scaling of heat transfer and temperature distribution in granular flows in rotating drums. Phys Rev E Stat Nonlinear Soft Matter Phys 94:042902. https://doi.org/10.1103/PhysRevE.94.042902

    Article  Google Scholar 

  38. Zhang Z, Liu Y, Zhao X, Xiao Y, Lei X (2019) Mixing and heat transfer of granular materials in an externally heated rotary kiln. Chem Eng Technol 42:987–995. https://doi.org/10.1002/ceat.201800232

    Article  Google Scholar 

  39. Zhu HP, Zhou ZY, Yang RY, Yu AB (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Eng Sci Chem. https://doi.org/10.1016/j.ces.2008.08.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Jordan Musser of NETL, Dr. Jean-Francois Dietiker of WVURC/NETL and Dr. Tingwen Li of AECOM/NETL for their kind help and valuable discussions. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work has also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

Funding

This research effort is funded by the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) Crosscutting Research Program Transitional Technology Development to Enable Highly Efficient Power Systems with Carbon Management initiative under award DE-FE0026393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Emady.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adepu, M., Chen, S., Jiao, Y. et al. Wall to particle bed contact conduction heat transfer in a rotary drum using DEM. Comp. Part. Mech. 8, 589–599 (2021). https://doi.org/10.1007/s40571-020-00356-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00356-z

Keywords

Navigation