Skip to main content

Advertisement

Log in

Evidence based Latin American Guidelines of clinical practice on prevention, diagnosis, management and treatment of glucocorticoid induced osteoporosis. A 2022 update

This manuscript has been produced under the auspices of the Committee of National Societies (CNS) and the Committee of Scientific Advisors (CSA) of the International Osteoporosis Foundation (IOF)

  • Consensus Document
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Guidelines and recommendations developed and endorsed by the International Osteoporosis Foundation (IOF) are intended to provide guidance for particular pattern of practice for physicians who usually prescribe glucocorticoid (GC) therapy, and not to dictate the care of a particular patient. Adherence to the recommendations within this guideline is voluntary and the ultimate determination regarding their application should be made by the physician in light of each patient’s circumstances. Guidelines and recommendations are intended to promote a desirable outcome but cannot guarantee any specific outcome. This guideline and its recommendations are not intended to dictate payment, reimbursement or insurance decisions. Guidelines and recommendations are subjected to periodic revisions as a consequence of the evolution of medicine, technology and clinical practice. A panel of Latin American (LATAM) experts specialized in osteoporosis with recognized clinical experience in managing patients with glucocorticoid-induced osteoporosis (GIO) met to produce evidence-based LATAM recommendations for the diagnosis and management of GIO. These guidelines are particularly intended to general practitioners and primary care physicians who prescribe GC treatments in LATAM to guide their daily clinical practice in terms of evaluation, prevention and treatment of GIO. These recommendations were based on systematic literature review using MEDLINE, EMBASE, SCOPUS and COCHRANE Library database during the period from 2012 to 2021. Randomized clinical trials (RCT), systematic reviews of RCT, controlled observational studies, guidelines and consensus were considered. Based on the review and expert opinion the panel members voted recommendations during two successive rounds of voting by panel members. Agreements for each statement were considered if a concordance of at least 70% was achieved following Delphi methodology. Grading of recommendations was made according to the Oxford Centre for the Evidence-based Medicine (EBM) criteria. Among five GIO guidelines and consensus initially identified, two of them (American College of Rheumatology 2017 and the Brazilian Guidelines 2021) were selected for comparison considering the latter as the most current guides in the LATAM region. Based on this methodology fifty statements were issued. All of them but four (1.20, 1.21, 1.23 and 4.2) attained agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Figure adapted from original article of Messina et al. [22]

Fig. 2

Similar content being viewed by others

References

  1. Walsh LJ, Wong CA, Pringle M et al (1996) Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. BMJ 313:344–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Van Staa TP, Leufkens HG, Abenhaim L et al (2000) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 15:993–1000

    Article  PubMed  Google Scholar 

  3. Van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13:777–787

    Article  PubMed  Google Scholar 

  4. Van Staa TP, Laan RF, Barton IP et al (2003) Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 48:3224–3229

    Article  PubMed  Google Scholar 

  5. Kaji H, Yamauchi M, Chihara K et al (2006) The threshold of bone mineral density for vertebral fracture in female patients with glucocorticoid-induced osteoporosis. Endocr J 53:27–34

    Article  PubMed  CAS  Google Scholar 

  6. Buckley L, Guyatt G, Fink HA et al (2017) American college of rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken) 69:1095–1110

    Article  Google Scholar 

  7. Gobierno Federal del Estado de México (2012) Norma oficial mexicana NOM-035-SSA2–2012 para la prevención y control de enfermedades en la perimenopausia y postmenopausia de la mujer. Criterios para brindar atención médica. Secretaria de Salud-Gobierno Federal del Estado de México. SEGOB. Diario oficial de la federación. https://dof.gob.mx/nota_detalle.php?codigo=5284235&fecha=07/01/2013#gsc.tab=0

  8. Messina OD, Somma LF, Tamporenea MI et al (2016) Guías para el diagnóstico, la prevención y el tratamiento de la osteoporosis inducida por glucocorticoides en el adulto. Actual Osteol 12:107–25

    Google Scholar 

  9. Pereira RM, Perez MO, Paula AP et al (2021) Guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis: an update of Brazilian society of rheumatology (2020). Arch Osteoporosis 16:1–16

    Article  Google Scholar 

  10. OCEBM Levels of Evidence Working Group*. “The Oxford Levels of Evidence 2” Oxford Centre for Evidence-Based Medicine. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence * OCEBM Levels of evidence working group = Jeremy Howick, Jain Chalmers (James Lind Library), Paul Glasziou, Trish Greenhalgh, Carl Heneghan, Alessandro Liberati, Ivan Moschetti, Bob Phillips, Hazel Thornton, Olive Goddard and Mary Hodgkinson

  11. Boulkedid R, Abdoul H, Loustau M et al (2011) Using and reporting the Delphi method for selecting healthcare quality indicators: a systematic review. PLoS ONE 6:e20476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Compston J, Cooper A, Cooper C et al (2017) National Osteoporosis Guideline Group (NOGG) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 12:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Laurent MR, Goemaere S, Verroken C et al (2022) Prevention and treatment of glucocorticoid-induced osteoporosis in adults: consensus recommendations from the belgian bone club. Front Endocrinol 13:908727

    Article  Google Scholar 

  14. Park SY, Gong HS, Kim KM et al (2018) Korean guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. J Bone Metab 25:195–211

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weare-Regales N, Hudey SN, Lockey RF (2021) Practical guidance for prevention and management of glucocorticoid-induced osteoporosis for the allergist/immunologist. J Allergy Clin Immunol Pract 9:1841–1850

    Article  PubMed  CAS  Google Scholar 

  16. Preedy VR, Watson RR (2010) 5-Point Likert Scale. In: Ronald R (ed) Handbook of disease burdens and quality of life measures. Springer, New York

    Chapter  Google Scholar 

  17. Duru N, van der Goes MC, Jacobs JW et al (2013) EULAR evidence-based and consensus-based recommendations on the management of medium to high-dose glucocorticoid therapy in rheumatic diseases. Ann Rheum Dis 72:1905–1913

    Article  PubMed  CAS  Google Scholar 

  18. Chalitsios C, Shaw D, McKeever TM (2021) Risk of osteoporosis and fragility fractures in asthma due to oral and inhaled corticosteroids: two population—based nested case-control studies. Thorax BMJ 76:21–28

    Article  Google Scholar 

  19. Egeberg A, Schwartz P, Harslof T et al (2021) Association of potent and very potent topical corticosteroids and the risk of osteoporosis and major osteoporotic fractures. JAMA Dermatol 157:275–282

    Article  PubMed  Google Scholar 

  20. Gonzalez AV, Coulombe J, Ernst P et al (2018) Long-term use of inhaled corticosteroids in COPD and the risk of fracture. Chest 153:321–328

    Article  PubMed  Google Scholar 

  21. Kanis JA, Hans D, Cooper C et al (2011) Task force of the FRAX Initiative Interpretation and use of FRAX in clinical practice. Osteoporos Int 22:2395–2411

    Article  PubMed  CAS  Google Scholar 

  22. Messina OD, Vidal LF, Vidal M et al (2021) Management of glucocorticoid-induced osteoporosis. Aging Clin Exp Res 33:793–804

    Article  PubMed  Google Scholar 

  23. Morales Torres JA, Clark PE, Deleze-Hinojosa M et al (2010) Fracture risk assessment in Latin america: is FRAX an adaptable instrument for the region? Clin Rheumatol 29:1085–1091

    Article  PubMed  Google Scholar 

  24. Clark PE, Denova Gutierrez E, Zerbini C et al (2018) FRAX-based intervention and assessment thresholds in seven latin American countries. Osteoporos Int 29:707–715

    Article  PubMed  CAS  Google Scholar 

  25. Kanis JA, Harvey NC, Johansson H et al (2020) A decade of FRAX: how has it changed the management of osteoporosis? Aging Clin Exp Res 32:187–196

    Article  PubMed  Google Scholar 

  26. Shuhart CR, Yeap SS, Anderson PA, et al. (2019) Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA Cross-calibration and least significant change, spinal cord injury, peri-prosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom. 22 4 453 71

  27. Lekamwasam S, Adachi JD, Agnusdei D et al (2012) A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int 23:2257–2276

    Article  PubMed  CAS  Google Scholar 

  28. Adami G, Saag KG (2019) Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporosis Int 30:1145–1156

    Article  CAS  Google Scholar 

  29. Ferrau F, Giovinazzo S, Messina E et al (2020) High bone marrow fat in patients with Cushing’s syndrome and vertebral fractures. Endocrine 67:172–179

    Article  PubMed  CAS  Google Scholar 

  30. Xiaojuan L, Schwartz AV (2020) MRI assessment of bone marrow composition in osteoporosis. Curr Osteoporos Rep 18:57–66

    Article  Google Scholar 

  31. Florez H, Hernández-Rodríguez J, Muxi A et al (2020) Trabecular bone score improves fracture risk assessment in glucocorticoid-induced osteoporosis. Rheumatology 59:1574–1580

    Article  PubMed  CAS  Google Scholar 

  32. Silva BC, Leslie WD, Resch H (2014) Trabecular bone score: a non-invasive analytical method based upon the DXA image. J Bone Min Res 29:518–530

    Article  Google Scholar 

  33. Yamauchi M (2009) Biochemical markers of bone turnover New aspect Biochemical bone markers of bone in patients treated with glucocorticoid. Clin Calcium 19:1092–1100

    PubMed  CAS  Google Scholar 

  34. Burshell AL, Möricke R, Correa-Rotter R et al (2010) Correlations between biochemical markers of bone turnover and bone density responses in patients with glucocorticoid-induced osteoporosis treated with teriparatide or alendronate. Bone 46:935–939

    Article  PubMed  CAS  Google Scholar 

  35. Jacobsson M, van Raalte DH, Heijboer AC et al (2020) Short-term glucocorticoid treatment reduces circulating sclerostin concentrations in healthy young men: a randomized, placebo-controlled, double-blind study. JBMR plus 4:e10341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Briot K, Cortet B, Roux C et al (2014) Bone section of the French society for Rheumatology (SFR) and osteoporosis research information group (GRIO) Update of recommendations on the prevention and treatment of glucocorticoid- induced osteoporosis. J Bone Spine 81:493–501

    Article  Google Scholar 

  37. Weaver CM, Alexander DD, Boushey CJ et al (2020) Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the national osteoporosis foundation. Osteoporos Int 27:367–376

    Article  Google Scholar 

  38. Homik J, Suarez-Almazor ME, Shea B et al (2000) Calcium and vitamin D for corticosteroid-induced osteoporosis cochrane database. Syst Rev 1998:CD000952

    Google Scholar 

  39. Rizzoli R, Biver E (2015) Glucocorticoid—induced osteoporosis: who to treat with what agent? Nat Rev Rheumatol 11:98–109

    Article  PubMed  CAS  Google Scholar 

  40. Rizzoli R (2021) Vitamin D supplementation: upper limit for safety revisited? Aging Clin Exp Res 33:19–24

    Article  PubMed  Google Scholar 

  41. Rizzoli R (2022) Dairy products and bone health. Aging Clin Exp Res 34:9–24

    Article  PubMed  Google Scholar 

  42. Sambrook P, Birmingham J, Kelly P et al (1993) A comparison of calcium, calcitriol, and calcitonin. N Engl J Med 328:1747–1752

    Article  PubMed  CAS  Google Scholar 

  43. Yeap SS, Fauzi AR, Kong NC et al (2008) A comparison of calcium, calcitriol, and alendronate in corticosteroid-treated premenopausal patients with systemic lupus erythematosus. J Rheumatol 35:2344–2347

    Article  PubMed  CAS  Google Scholar 

  44. Richy F, Ethgen O, Bruyere O et al (2004) Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int 15:301–310

    Article  PubMed  CAS  Google Scholar 

  45. Muir JM, Ye C, Bhandari M et al (2013) The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: a retrospective analysis from the Canadian multicentre osteoporosis study. BMC Musculoskelet Disord 23:253

    Article  Google Scholar 

  46. El-Khoury F, Cassou B, Latouche A et al (2015) Effectiveness of two-year balance training programme on prevention of fall induced injuries in at risk women aged 75–85 living in community: Ossébo randomised controlled trial. BMJ 22:h3830

    Article  Google Scholar 

  47. Madureira MM, Takayama L, Gallinaro AL et al (2007) Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: a randomized controlled trial. Osteoporos Int 18:419–425

    Article  PubMed  CAS  Google Scholar 

  48. de Jong Z, Munneke M, Lems WF et al (2004) Slowing of bone loss in patients with rheumatoid arthritis by long-term high-intensity exercise: results of a randomized, controlled trial. Arthritis Rheum 50:1066–1076

    Article  PubMed  Google Scholar 

  49. Zhao R, Zhang M, Zhang Q (2017) The effectiveness of combined exercise interventions for preventing postmenopausal bone loss: a systematic review and meta-analysis. J Sports Phys Ther 47:241–251

    Article  Google Scholar 

  50. Schmitt NM, Schmitt J, Dören M (2009) The role of physical activity in the prevention of osteoporosis in postmenopausal women-an update. Maturitas 63:34–38

    Article  PubMed  Google Scholar 

  51. Chow TH, Lee BY, Ang ABF et al (2017) The effect of Chinese martial arts Tai Chi Chuan on prevention of osteoporosis: a systematic review. J Orthop Translat 26:74–84

    Google Scholar 

  52. Pongchaiyakul C, Nguyen TV, Kosulwat V et al (2004) Effects of physical activity and dietary calcium intake on bone mineral density and osteoporosis risk in a rural Thai population. Osteoporos Int 15:807–813

    Article  PubMed  CAS  Google Scholar 

  53. Seo S, Chun S, Newell MA et al (2015) Association between alcohol consumption and Korean young women’s bone health: a cross sectional study from the 2008 to 2011 korea national health and nutrition examination survey. BMJ Open 5:e007914

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lopez Gavilanez E, Gavilanes AW, Chedraui P et al (2018) New FRAX-based intervention and assessment thresholds for the Ecuadorian population. Arch Osteoporos 13:1–2

    Article  Google Scholar 

  55. Bishop N, Arundel P, Clark E et al (2014) International society of clinical densitometry fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom 17:275–280

    Article  PubMed  Google Scholar 

  56. Ward LM, Rauch F (2018) Anabolic therapy for the treatment of osteoporosis in childhood. Curr Osteoporos Rep 16:269–276

    Article  PubMed  Google Scholar 

  57. Cruse LM, Valeriano J, Vasey FB et al (2006) Prevalence of evaluation and treatment of glucocorticoid-induced osteoporosis in men. J Clin Rheumatol 12:221–225

    Article  PubMed  Google Scholar 

  58. Saag KG, Emkey R, Schnitzer TJ et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis Glucocorticoid-induced osteoporosis intervention study group. N Engl J Med 339:292–299

    Article  PubMed  CAS  Google Scholar 

  59. Stoch SA, Saag KG, Greenwald M et al (2009) Once-weekly oral alendronate 70 mg in patients with glucocorticoid-induced bone loss: a 12-month randomized, placebo-controlled clinical trial. J Rheumatol 36:1705–1714

    Article  PubMed  CAS  Google Scholar 

  60. Cohen S, Levy RM, Keller M et al (1999) Risedronate therapy prevents corticosteroid-induced bone loss: a 12-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 42:2309–2318

    Article  PubMed  CAS  Google Scholar 

  61. Reid DM, Devogelaer JP, Saag K et al (2009) Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373:1253–1263

    Article  PubMed  CAS  Google Scholar 

  62. Glüer CC, Marin F, Ringe JD et al (2013) Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the Euro GIOPs trial. J Bone Miner Res 28:1355–1368

    Article  PubMed  Google Scholar 

  63. Saag KG, Shane E, Boonen S et al (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039

    Article  PubMed  CAS  Google Scholar 

  64. Hirooka Y, Nozaki Y, Okuda S et al (2021) 4-year teriparatide followed by denosumab vs continuous denosumab in glucocorticoid-induced osteoporosis patients with prior bisphosphonate treatment. Front Endocrinol 27:753185

    Article  Google Scholar 

  65. Curtis EM, Reginster JY, Al-Daghri N et al (2022) Management of patients at very high risk of osteoporosis fractures through sequential treatments. Aging Clin Exp Res 34:695–714

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lespessailles E, Chapurlat R (2020) High fracture risk patients with glucocorticoid-induced osteoporosis should get an anabolic treatment first. Osteoporos Int 31:1829–1834

    Article  PubMed  CAS  Google Scholar 

  67. Kanis JA, Harvey NC, McCloskey E et al (2020) Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporosis Int 31:1–12

    Article  CAS  Google Scholar 

  68. Levy S, Fayez I, Taguchi N et al (2009) Pregnancy outcome following in utero exposure to bisphosphonates. Bone 44:428–430

    Article  PubMed  CAS  Google Scholar 

  69. Munns CF, Rauch F, Ward L et al (2004) Maternal and fetal outcome after long-term pamidronate treatment before conception: a report of two cases. J Bone Miner Res 19:1742–1745

    Article  PubMed  Google Scholar 

  70. Patlas N, Golomb G, Yaffe P (1999) Transplacental effects of bisphosphonates on fetal skeletal ossification and mineralization in rats. Teratology 60:68–73

    Article  PubMed  CAS  Google Scholar 

  71. Chan B, Zacharin M (2006) Maternal and infant outcome after pamidronate treatment of polyostotic fibrous dysplasia and osteogenesis imperfecta before conception: a report of four cases. J Clin Endocrinol Metab 91:2017–2020

    Article  PubMed  CAS  Google Scholar 

  72. Minsker DH, Manson JM, Peter CP (1993) Effects of the bisphosphonate, alendronate, on parturition in the rat. Toxicol Appl Pharmacol 121:217–223

    Article  PubMed  CAS  Google Scholar 

  73. Kanis JA, Johansson H, Harvey NC et al (2021) An assessment of intervention thresholds for very high fracture risk applied to the NOGG guidelines: a report for the National Osteoporosis Guideline Group (NOGG). Osteoporos Int 32:1951–1960

    Article  PubMed  CAS  Google Scholar 

  74. Sandru F, Carsote M, Dumitrascu MC et al (2020) Glucocorticoid and trabecular bone score. J Med Life 13:449–453

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brunova J, Kratochvilova S, Stepankova J (2018) Osteoporosis therapy with denosumab in organ transplant recipients. Front Endocrinol 9:162

    Article  Google Scholar 

  76. Kageyama G, Okano T, Yamamoto Y et al (2016) Very high frequency of fragility fractures associated with high-dose glucocorticoids in postmenopausal women: a retrospective study. Bone Rep 17:3–8

    Google Scholar 

  77. McCloskey EV, Chotiyarnwong P, Harvey NC et al (2022) Population screening for fracture risk in postmenopausal women—a logical step in reducing the osteoporotic fracture burden? Osteoporos Int. https://doi.org/10.1007/s00198-022-06419-6

    Article  PubMed  PubMed Central  Google Scholar 

  78. Green SB, Pappas AL (2014) Effects of maternal bisphosphonate use on fetal and neonatal outcomes. Am J Health Syst Pharm 71:2029–2036

    Article  PubMed  CAS  Google Scholar 

  79. Yarrington JT, Capen CC, Black HE et al (1976) Experimental parturient hypocalcemia in cows following prepartal chemical inhibition of bone resportion. Am J Pathol 83:569–588

    PubMed  PubMed Central  CAS  Google Scholar 

  80. French AE, Kaplan N, Lishner M et al (2003) Taking bisphosphonates during pregnancy. Can Fam Physician 49:1281–1282

    PubMed  PubMed Central  Google Scholar 

  81. Stathopoulos IP, Liakou CG, Katsalira A et al (2011) The use of bisphosphonates in women prior to or during pregnancy and lactation. Hormones (Athens) 10:280–291

    Article  Google Scholar 

  82. Saag KG, Wagman RB, Geusens P et al (2018) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active-controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol 6:445–454

    Article  PubMed  CAS  Google Scholar 

  83. Saag KG, Pannacciulli N, Geusens P et al (2019) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: final results of a 24-month randomized, double-blind. Double-Dummy Trial Arthritis Rheumatol 71:1174–1184

    Article  PubMed  CAS  Google Scholar 

  84. Al Adhoubi NK, Al Salmi I (2021) Safety of denosumab in patients with chronic kidney disease. Saudi J Kidney Dis Transpl 32:1235

    PubMed  Google Scholar 

  85. Scanlon PD, Connett JE, Wise RA et al (2004) Loss of bone density with inhaled triamcinolone in lung health study II. Am J Respir Crit Care Med 170:1302–1309

    Article  PubMed  Google Scholar 

  86. Bianchi ML, Leonard MB, Bechtold S et al (2014) International society for clinical densitometry bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD pediatric official positions. J Clin Densitom 17:281–294

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript has been endorsed by the Committee of National Societies (CNS) and by the Committee of Scientific Advisors (CSA) of the International Osteoporosis Foundation (IOF)

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maritza Vidal.

Ethics declarations

Conflict of interest

OD Messina received honoraria from Amgen, E Lilly and Pfizer. S Cerdas Perez received honoraria from Amgen, Novo Nordisk, MSD, AstraZeneca and Faes Farma. The other authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messina, O.D., Vidal, M., Torres, J.A. et al. Evidence based Latin American Guidelines of clinical practice on prevention, diagnosis, management and treatment of glucocorticoid induced osteoporosis. A 2022 update. Aging Clin Exp Res 34, 2591–2602 (2022). https://doi.org/10.1007/s40520-022-02261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-022-02261-2

Keywords

Navigation